COM-EXPRESS MODULES BASED ON ELBRUS MICROPROCESSORS FOR ONBOARD COMPUTING SYSTEMS

  • N.А. Bocharov PJS «Brook INEU »
  • А.V. Glukhov PJS «Brook INEUM»
  • N. B. Paramonov PJSC «Brook INEUM»
Keywords: Onboard computing systems, robotics, COM-Express, Elbrus, technical vision

Abstract

Research in the field of creating specialized computing systems for robots is conducted in
many world scientific centers, including our country. The development of capabilities of sensor
systems, global navigation systems, growth of computing power and improvement of algorithms
allow creating onboard computing systems with broad intellectual capabilities. An important, but
unsolved problem remains the equipping of such computing systems with domestically produced
microprocessors. The need to take into account the maximum weight and size characteristics, the
requirements for the cooling system of the computing complex, the requirements for on-boardpower supply and power consumption, performance requirements and external interfaces cause
the complexity and high cost of developing on-board computing systems. The lack of unification of
computing modules during development creates additional difficulties for developers of robots,
increases the final cost of the robot and complicates its modernization. The use of a standardized
form factor such as COM-Express makes it possible to divide the onboard computing complex into
a universal high-tech system part and a carrier board. The microprocessor, peripheral interface
controller, RAM and hard disk are placed on the system module, which is produced in large quantities
and can be replaced with a newer one when new generations of domestic computing equipment
appear. The carrier board, in turn, is easy to develop and cheap to manufacture, and according
to its characteristics can be configured for a specific robotic complex. This article discusses
COM-Express modules based on domestic Elbrus microprocessors. Their applicability for the
creation of promising on-board computing systems is shown. The results obtained by the authors
indicate the prospects of import substitution in the field of robotics.

References

1. Romanov A.M. Obzor apparatno-programmnogo obespecheniya sistem upravleniya robotov
razlichnogo masshtaba i naznacheniya. Ch. 3. Ekstremal'naya robototekhnika [Review of
hardware and software control systems for robots of various sizes and purposes. Part 3. Extreme
robotics], Rossiyskiy tekhnologicheskiy zhurnal [Russian technological journal], 2020,
Vol. 8, No. 3 (35), pp. 14-32. DOI: 10.32362/2500-316X-2020-8-3-14-32.
2. Bychkov I.N., Lobanov I.N., Molchanov I.A. Resheniya po vklyucheniyu sredstv zashchity
informatsii v vychislitel'nye kompleksy na osnove platformy "El'brus" [Solutions for the inclusion
of information security tools in computing complexes based on the Elbrus platform],
Nanoindustriya [Nanoindustry], 2020, Vol. 13, No. S4 (99), pp. 103-104. DOI: 10.22184/
1993-8578.2020.13.4s.103.104.
3. Bocharov N.A. Programmno-apparatnaya platforma "El'brus" dlya resheniya zadach
iskusstvennogo intellekta [Software and hardware platform "Elbrus" for solving artificial intelligence
problems], Nanoindustriya [Nanoindustry], 2021, Vol. 14, No. S7 (107), pp. 638-640.
DOI: 10.22184/1993-8578.2021.14.7s.638.640.
4. Chuchko P.A., Bychkov I.N., Panchenko E.G. Problema unifikatsii moduley na osnove
protsessora "El'brus-2S3" [The problem of unification of modules based on the processor "Elbrus-
2C3"], Nanoindustriya [Nanoindustry], 2021, Vol. 14, No. S7(107), pp. 96-97. DOI:
10.22184/1993-8578.2021.14.7s.96.97.
5. Dashevskiy V.P., Bizin M.M. Obzor vozmozhnostey bortovykh vychisliteley na osnove
SMARC-moduley dlya robototekhnicheskikh kompleksov [Overview of the capabilities of
onboard computers based on SMART modules for robotic complexes], Doklady Tomskogo
gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State
University of Control Systems and Radioelectronics.], 2015, No. 3 (37), pp. 91-96.
6. Afonin D. Novosti s rynka vstraivaemykh sistem: nastuplenie COM Express prodolzhaetsya
[News from the embedded systems market: COM Express offensive continues], Komponenty i
tekhnologii [Components and Technologies], 2007, No. 4 (69), pp. 138-141.
7. Available at: http://www.mcst.ru/e4c-com.
8. Available at: http://www.sm1820.ru/2018/09/04/mp18/.
9. Available at: http://www.sm1820.ru/2021/12/10/e2c3-com/.
10. Bocharov N.A., Zuev A.G., Slavin O.A. Proizvoditel'nost' mikroprotsessora El'brus-8SV dlya
resheniya zadach tekhnicheskogo zreniya v usloviyakh ogranicheniy energopotrebleniya [The
performance of the Elbrus-8C V microprocessor for solving problems of technical vision in
conditions of limited energy consumption], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2021, No. 1 (218), pp. 259-271.
11. Bocharov N.A. Modelirovanie algoritmov katastrofoustoychivosti grupp robotov na
programmno-apparatnoy platforme "El'brus" [Modeling of algorithms for disaster tolerance of
groups of robots on the software and hardware platform "Elbrus"], Radiopromyshlennost' [Radio
industry], 2019, No. 3, pp. 8-14. DOI: 10.21778/2413-9599-2019-29-3-8-14.
12. Suman Harapanahalli, Niall O Mahony, Gustavo Velasco Hernandez, Sean Campbell, Daniel
Riordan, Joseph Walsh. Autonomous Navigation of mobile robots in factory environment,
Procedia Manufacturing, 2019, Vol. 38, pp. 1524-1531. SSN 2351-9789. Available at:
https://doi.org/10.1016/j.promfg.2020.01.134.
13. Pileun Kim, Jisoo Park, Yong K. Cho, Junsuk Kang, UAV-assisted autonomous mobile robot
navigation for as-is 3D data collection and registration in cluttered environments, Automation
in Construction, 2019, Vol. 106, 102918. ISSN 0926-5805. Available at: https://doi.org/
10.1016/j.autcon.2019.102918.
14. Pieter M. Blok, Koen van Boheemen, Frits K. van Evert, Joris IJsselmuiden, Gook-Hwan Kim.
Robot navigation in orchards with localization based on Particle filter and Kalman filter, Computers
and Electronics in Agriculture, 2019, Vol. 157, pp. 261-269. ISSN 0168-1699. Available
at: https://doi.org/10.1016/j.compag.2018.12.046.
15. Vasiliki Balaska, Loukas Bampis, Moses Boudourides, Antonios Gasteratos. Unsupervised
semantic clustering and localization for mobile robotics tasks, Robotics and Autonomous Systems,
2020, Vol. 131, 103567. ISSN 0921-8890. Available at: https://doi.org/10.1016/
j.robot.2020.103567.
16. Pieter M. Blok, Koen van Boheemen, Frits K. van Evert, Joris IJsselmuiden, Gook-Hwan Kim.
Robot navigation in orchards with localization based on Particle filter and Kalman filter, Computers
and Electronics in Agriculture, 2019, Vol. 157, pp. 261-269. ISSN 0168-1699. Available
at: https://doi.org/10.1016/j.compag.2018.12.046.
17. Chaymaa Lamini, Said Benhlima, Ali Elbekri. Genetic Algorithm Based Approach for Autonomous
Mobile Robot Path Planning, Procedia Computer Science, 2018, Vol. 127, pp. 180-189.
ISSN 1877-0509. Available at: https://doi.org/10.1016/j.procs.2018.01.113.
18. Haitao Zhao, Lingchu Mao, Jibo Wei. Coverage on demand: A simple motion control algorithm
for autonomous robotic sensor networks, Computer Networks, 2018, Vol. 135, pp. 190-200. ISSN
1389-1286. Available at: https://doi.org/10.1016/j.comnet.2018.02.004.
19. Guilherme Maeda, Okan Koç, Jun Morimoto. Phase portraits as movement primitives for fast
humanoid robot control, Neural Networks, 2020, Vol. 129, pp. 109-122. ISSN 0893-6080.
Available at: https://doi.org/10.1016/j.neunet.2020.04.007.
20. Bocharov N.A., Paramonov N.B., Alexandrov A.V., Slavin O.A. Solving of tasks of cognitive control
a robots group in multi-core microprocessors "Elbrus", CEUR Workshop Proceedings : Selected
Papers of the 2nd International Scientific Conference "Convergent Cognitive Information Technologies",
Convergent 2017, Moscow, 24–26 November 2017. Moscow, 2017, pp. 234-244.
21. Bocharov N.A., Gladkikh A.S., Paramonov N.B., Senchenkov S.V. Vozmozhnosti
mikroprotsessorov El'brus-8S i El'brus-8SV dlya resheniya zadach robototekhniki [Possibilities
of microprocessors Elbrus-8C and Elbrus-8SV for solving robotics problems], Robotizatsiya
Vooruzhennykh Sil Rossiyskoy Federatsii: Sb. statey V voenno-nauchnoy konferentsii, Anapa,
29–30 iyulya 2020 goda [Robotization of the Armed Forces of the Russian Federation: Collection
of articles of the V Military Scientific Conference, Anapa, July 29-30, 2020]. Anapa: Federal'noe
gosudarstvennoe avtonomnoe uchrezhdenie "Voennyy innovatsionnyy tekhnopolis "ERA",
2020, pp. 71-83.
Published
2022-04-21
Section
SECTION V. TECHNICAL VISION