НЕЙРОСЕТЕВЫЕ ТЕХНОЛОГИИ В ЗАДАЧАХ МОНИТОРИНГА ТЕРМОФЛУКТУАЦИОННЫХ ПРОЦЕССОВ КАБЕЛЬНОЙ ЛИНИИ С УЧЕТОМ ВЛИЯНИЯ ПОМЕХ
Аннотация
Статья посвящена оценке влияния магнитных помех, при исследовании термофлук-
туационных процессов в режиме динамической токовой нагрузки силовой кабельной линии
(СКЛ). На основе таких методов искусственного интеллекта, как нейронные сети и не-
четкая логика исследовалась термическая стойкость изоляционных материалов СКЛ оп-
ределяющих пропускную способность кабельной линии электроэнергетических систем.
Сравнительный обзор существующих на данный момент традиционных неразрушающих
методов прогнозирования термических процессов в СКЛ показал, что большинство мето-
дов обладают низкой точностью прогноза, а также обладают высокой степенью сложно-
сти и большим количеством необходимых вычислительных операций для получения необхо-
димых данных прогноза термических процессов в СКЛ. Также большинство методов про-
гноза не способны работать в режиме реального времени, что является крайне сущест-
венным недостатком. Для решения данной проблемы необходимо прибегнуть к системам
прогнозирования, которые строятся на базе искусственного интеллекта с применением
методов машинного обучения. Наиболее перспективным на сегодня представляется метод
искусственных нейронных сетей (ИНС). Показана необходимость разработки более со-
вершенной методики анализа старения изоляционных материалов СКЛ. Обоснована акту-
альность задачи создания нейросетей (НС) для оценки пропускной способности, расчёта и
прогнозирования температуры жил СКЛ в режиме реального времени на основе данных
системы температурного мониторинга, с учетом изменения токовой нагрузки линии и
внешних условий теплоотвода. Разработана нейросеть для определения температурного
режима токоведущей жилы силового кабеля. Проведен сравнительный анализ эксперимен-
тальных и расчетных характеристик распределений температуры, при этом исследова-
лись различные нагрузочные режимы работы и функции изменения тока кабеля. Разрабо-
тана нейросетевая модель в Matlab Simulink для прогнозирования температуры жилы ка-
беля. Создание, обучение и моделирование нейронной сети осуществлялось с помощью
Neural Network Toolbox. Модель может быть использована в устройствах и системах не-
прерывного диагностирования силовых кабелей по температурным режимам.
Литература
napryazheniem 6–110 kV s izolyatsiey iz sshitogo polietilena [Efficiency of application of cables
with voltage of 6–110 kV with cross-linked polyethylene insulation]. Part 2, Energetika.
Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob"edineniy SNG [Energy. Proceedings
of higher educational institutions and Energy associations of the CIS], 2017, Vol. 60,
No. 6, pp. 505-522. Available at: https://doi.org/10.21122/1029-7448-2017-60-6-505-522.
2. Elcut. Modelirovanie elektromagnitnykh, teplovykh i uprugikh poley metodom konechnykh
elementov: Versiya 6.3.1. Rukovodstvo pol'zovatelya [Elcut. Simulation of electromagnetic,
thermal and elastic fields by the finite element method: Version 6.3.1. User's Guide]. Available
at: https://elcut.ru/downloads/manual_r_pocket.pdf.
3. Poluyanovich N.K, Dubyago M.N. Prognozirovanie resursa kabel'nykh liniy s ispol'zovaniem
metoda iskusstvennykh neyronnykh setey [Forecasting the resource of cable lines using the
method of artificial neural networks], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2019, No. 3 (205), pp. 51-62.
4. Udovichenko O.V. Temperaturnyy monitoring kabel'nykh liniy vysokogo napryazheniya na
osnove kabeley s izolyatsiey iz sshitogo polietilena [Temperature monitoring of high voltage cable
lines based on XLPE insulated cables], Linii elektroperedachi 2008: proektirovanie,
stroitel'stvo opyt ekspluatatsii i nauchno-tekhnicheskiy progress: Mater. III rossiyskoy nauchnoprakticheskoy
konferentsii s mezhdunarodnym uchastiem [Power lines 2008: design, construction,
operating experience and scientific and technical progress: Materials of the III Russian scientific
and practical. conf. with international participation]. Novosibirsk, 2008, pp. 301-304.
5. IEC Standard 60287–1–1. Electric Cables – Calculation of the Current Rating. Part 1: Сurrent
Rating Equations (100% Load Factor) and Calculation of Losses – Section 1: General, 2006.
6. Shurykin A.A., Poluyanovich N.K. Otsenka matematicheskogo ozhidaniya resursa izolyatsii v
zadachakh povysheniya nadezhnosti elektrooborudovaniya [Estimation of the mathematical expectation
of the insulation resource in the tasks of increasing the reliability of electrical equipment],
Inzhenernyy vestnik Dona [Engineering bulletin of the Don], 2019, No. 2 (53), pp. 16.
7. Neher J.H. McGrath M.H. Calculation of the Temperature Rise and Load Capability of Cable
Systems, AIEE Transactions, 1957, Vol. 76, Part 3, pp. 755-772.
8. Anders G.J. Rating of Cables on Riser Poles, in Trays, in Tunnels and Shafts - a Review, IEEE
Transactions on Power Delivery, 1996, Vol. 11, No. 1, pp. 3-11.
9. Sellers S.M., Black W.Z. Refinements to the Neher-McGrath Model for Calculating the Ampacity of
Underground Cables, IEEE Transactions on Power Delivery, 1996, Vol. 11,No. 1, pp. 12-30.
10. Lavrov Yu.A. Kabeli vysokogo napryazheniya s izolyatsiey iz sshitogo polietilena.
Trebovaniya ekonomichnosti, nadezhnosti, ekologichnosti [XLPE insulated high voltage cables.
Requirements for efficiency, reliability, environmental friendliness], Novosti
elektrotekhniki [Electrical Engineering News], 2008, N. 2.
11. Lavrov Yu.A. Sistemnyy podkhod k proektirovaniyu vozdushnykh i kabel'nykh liniy
elektroperedachi srednego i vysokogo napryazheniya [A systematic approach to the design of medium
and high voltage overhead and cable power lines], Linii elektroperedachi 2008: proektirovanie,
stroitel'stvo opyt ekspluatatsii i nauchno-tekhnicheskiy progress: mate-rialy III rossiyskoy nauchnoprakticheskaya
konferentsiya s mezhdunarodnym uchastiem [Power lines 2008: design, construction,
operating experience and scientific and technical progress: materials of the III Russian scientific
and practical. conf. with international participation]. Novosibirsk, 2008, pp. 17-27.
12. Kholodnyy S.D. Nagrevanie i okhlazhdenie kabelya, prolozhennogo v zemle [Heating and
cooling of a cable laid in the ground], Elektrichestvo [Electricity], 1964, No. 6, pp. 35-40.
13. Morello A. Variazioni Transitorie di Temperatura Nei Cavi per Energia, L'Elettrotecnica,
1958, Vol. XLV, No. 4, pp. 213-222.
14. Ingersoll L.R., Zobel O.J., Ingersoll A.C. Heat Conduction with Engineering, Geological and
Other Applications – New York: McGraw-Hill, 1954.
15. Working Group 02, CIGRE Study Committee 21: Current Ratings of Cables for Cyclic and
Emergency Loads. Part 1. Cyclic Ratings (Load Factor less than 100%) and Response to a
Step Function, Electra, 1972, No. 24, pp. 63-96.
16. Prime J.B., Valdes J.G. Systems to Monitor the Conductor Temperature of Underground Cable,
IEEE Transactions on Power Apparatus and Systems, 1981, Vol. PAS–100, No. 1,
pp. 211-219.
17. Anders G.J., Napieralski A., Orlikowski M., Zubert M. Advanced Modeling Techniques for
Dynamic Feeder Rating Systems, IEEE Transactions on Industry Applications, 2003, Vol. 39,
No. 3, pp. 619-626.
18. Dubyago M.N., Polyuyanovich N.K., Burkov D.V. Consideration of partial discharge energy in
a mathematical model of thermal-fluctuation processes of a power cable, EAI Endorsed Transactions
on Energy Web. European Alliance for Innovation, 2019, Vol. 6, No. 24,
pp. e3. doi.org/10.4108/eai.13-7-2018.157036.
19. Poluyanovich N.K., Dubyago M.N., Shurykin A.A., Burkov D.V. Estimation of partial discharge
energy in a mathematical model of thermal fluctuation processes of a power cable. Ufa State
Aviation Technical University. Ufa: publishing complex USATU, 2019, pp. 127-132. 978-1-
7281-1728-7 ©2019 IEEE.
20. Dubyago M.N., Poluyanovich N.K. Partial Discharge Signal Selection Method for Interference
Diagnostics of Insulating Materials, in Proc. 2019 Radiation and Scattering of Electromagnetic
Waves, 2019, pp. 124-127.
21. Dubyago Marina N. and Poluyanovich Nikolay K. Estimation of Insulating Materials Depreciation
and Forecasting the Residual Cable Re-source Considering the Current Core Temperature, International
Journal of Materials, Mechanics and Manufacturing, 2019, Vol. 7, No. 1, pp. 415-420.
22. Dubyago M.N., Poluyanovich N.K. Thermal processes of the isolating materials in problems of
nondestructive diagnostics of the main and distributive power stations, EAI Endorsed Transactions
on Energy Web and Information Technologies. 12 2017-01 2018, Vol. 5. Issue 16. E3.
23. Dubyago M.N., Poluyanovich N.K. Termodinamicheskiy sposob vyyavleniya destruktsii
izolyatsii v zadachakh diagnostiki i prognozirovaniya resursa kabel'nykh sistem [Thermodynamic
method for detecting the destruction of insulation in the problems of diagnostics and
forecasting the resource of cable systems], Inzhenernyy vestnik Dona [Engineering Bulletin of
Don], 2017, No. 3. Available at: http://www.ivdon.ru/ru/magazine/archive/N3y2017/4360.
24. Dubyago M.N., Poluyanovich N.K., Bur'kov D.V. Razrabotka metoda prognozirovaniya
protsessa stareniya izolyatsii na osnove termofluktuatsionnoy teorii chastichnykh razryadov
[Development of a method for predicting the aging process of insulation based on the thermal
fluctuation theory of partial discharges], [Engineering Bulletin of Don], 2017, No. 3. Available
at: http://www.ivdon.ru/ru/magazine/archive/N3y2017/4377.
25. Poluyanovich N.K., Dubyago M.N., Shurykin A.A. i Burkov D.V. Otsenka energii partsial'nogo
razryada v matematicheskoy modeli teplovykh fluktuatsionnykh protsessov silovogo kabelya,
2019 g. [Estimation of the partial discharge energy in a mathematical model of thermal fluctuation
processes in a power cable], Mezhdunarodnaya konferentsiya po elektrotekhnicheskim
kompleksam i sistemam (IKOEKS), Ufa, Rossiya, 2019 g. [International Conference on Electrical
Complexes and Systems ( IKOEKS), Ufa, Russia, 2019], pp. 1-6.