АНАЛИЗ ХАРАКТЕРИСТИК СФК НА ОСНОВЕ МЕТОДОВ ИЗБЫТОЧНОГО КОДИРОВАНИЯ

  • Д. В. Тельпухов Институт проблем проектирования в микроэлектронике РАН (ИППМ РАН)
  • Т.Д. Жукова Институт проблем проектирования в микроэлектронике РАН (ИППМ РАН)
  • А. Н. Щелоков Институт проблем проектирования в микроэлектронике РАН (ИППМ РАН)
Ключевые слова: Отказоустойчивость, схемы функционального контроля (СФК), характеристики надежности, комбинационные схемы, спектральный R-код, код с малой плотностью проверок на чётность

Аннотация

Обычно сбои, возникающие в электронной аппаратуре под действием различных
дестабилизирующих факторов, таких как, например, высокая или низкая температура или
ионизирующее излучение, находились под пристальным вниманием разработчиков элемен-
тов памяти. Но последние исследования в данной области показывают, что с развитием
микроэлектронной промышленности число сбоев в комбинационных участках схемы рас-
тет и в скором времени их частота возникновения будет сопоставима с частотой в неза-
щищенных элементах памяти. На сегодняшний день для решения проблемы проектирова-
ния комбинационных схем повышенной сбоеустойчивости в условиях экстремального при-
менения особое внимание стали уделять методам синтеза схем функционального контроля
(СФК). Данные методы, позволяют за счет внесения дополнительной структурной избы-
точности, наделить схему способностью автоматически выполнять обнаружение и/или
исправление возникающих в ней ошибок. Однако, в результате применения различных ме-
тодов синтеза СФК в зависимости от исходных параметров и внутреннего строения за-
щищаемой схемы реализуются устройства, обладающие различной эффективностью и
характеристиками надежности. Поэтому возникает необходимость в определении и раз-
работке оценочных функций для выполнения анализа по нахождению наилучшего метода
построения схемы контроля для конкретного устройства без проведения предварительно-
го моделирования. Данная работа посвящена разработке спецификации оценочных функций
структурной избыточности и характеристик надежности на примере разработанных
методов синтеза схем функционального контроля на базе спектрального и низкоплотно-
стного кода. Был проведен сравнительный и корреляционный анализ аналитических данных
с экспериментальными значениями с целью оценки эффективности полученных в резуль-
тате исследования функций. Полученные в рамках данной статьи оценочные функции про-
демонстрировали высокую точность в вычислении характеристик СФК.

Литература

1. Rao N.P. and Desai M.P. A detailed characterization of errors in logic circuits due to singleevent
transients, Proc. Euromicro Conf. Digit. Syst. Design., 2015, pp. 714-721.
2. Saremi M., Privat A., Barnaby H.J., and Clark L.T. Physically based predictive model for single
event transients in CMOS gates, IEEE Trans. Electron Devices, 2016, Vol. 63, No. 6,
pp. 2248-2254.
3. Gavrilov S.V., Ivanova G.A., Ryzhova D.I., Solov'ev A.N., Stempkovskiy A.L. Metody sinteza
pomekhozashchishchennykh kombinatsionnykh blokov [Methods of noise immunity combinational
blocks synthesis], Informatsionnye tekhnologii [Information technology], 2015, Vol. 21,
No. 11, pp. 821-826.
4. Gavrilov S.V., Gurov S.I., Zhukova T.D., Ryzhova D.I. Primenenie teorii kodirovaniya dlya
povysheniya pomekhozashchishchennosti kombinatsionnykh skhem [Application of coding
theory to improve the noise immunity of combinational circuits], Informatsionnye tekhnologii
[Information technology], 2016, Vol. 22, No. 12, pp. 931-937.
5. Gavrilov S.V., Zhukova T.D., Ryzhova D.I. Metody optimizatsii skhem kodirovaniya na osnove
diagramm dvoichnykh resheniy dlya sinteza otkazoustoychivykh mikro- i nanoelektronnykh
skhem [Optimization methods of coding circuits based on the binary decision diagrams for
synthesis of fault-tolerant microand nanoelectronic circuits], VII Vserossiyskaya nauchnotekhnicheskaya
konferentsiya «Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh
sistem – 2016»: Sb. nauchn. tr. [VII all-Russian scientific and technical conference "Problems
of development of advanced micro- and nanoelectronic systems-2016": Collection of scientific
papers], ed. by A.L. Stempkovskogo. Part IV, pp. 158-165.
6. Mahatme N.N. et al. Impact of technology scaling on the combinational logic soft error rate,
2014 IEEE international reliability physics symposium. IEEE, 2014, pp. 5F. 2.1-5F. 2.6.
7. Yaran T.T.G., Tosun S. Improving combinational circuit resilience against soft errors via selective
resource allocation, 2017 IEEE 20th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS). IEEE, 2017, pp. 12-15.
8. Mitra, S., McCluskey E.J. Which Concurrent Error Detection Scheme To Choose?, Proc. International
Test Conference, 2000, pp. 985-994.
9. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Dmitriev V.V. Novye struktury sistem
funktsional'nogo kontrolya logicheskikh skhem [New structures of the concurrent error
detection systems for logic circuits], Avtomatika i telemekhanika [Automation and
telemechanics], 2017, No. 2, pp. 128-143.
10. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Pivovarov D.V. Sintez sistem
funktsional'nogo kontrolya mnogovykhodnykh kombinatsionnykh skhem na osnove metoda
logicheskogo dopolneniya [Synthesis of concurrent error detection systems of multioutput
combinational circuits based on Boolean complement method], Vestnik Tomskogo
gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika [Bulletin of
Tomsk state University. Management, computer engineering and computer science], 2017,
No. 41, pp. 69-80.
11. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Kody s summirovaniem s fiksirovannymi
znacheniyami kratnostey obnaruzhivaemykh monotonnykh i asimmetrichnykh oshibok dlya
sistem tekhnicheskogo diagnostirovaniya [Sum codes with fixed values of multiplicities for
detectable unidirectional and asymmetrical errors for technical diagnostics of discrete systems],
Avtomatika i telemekhanika [Automation and telemechanics], 2019, No. 6, pp. 121-141.
12. Khetagurov YA.A., Rudnev Yu.P. Povyshenie nadezhnosti tsifrovykh ustroystv metodami
izbytochnogo kodirovaniya [Improving the reliability of digital devices methods of redundant
coding]. Moscow: Energiya, 1974, 270 p.
13. Zhukova T.D. Razrabotka sistemy avtomatizirovannogo proektirovaniya SFK na osnove
metodov izbytochnogo kodirovaniya [Functional control circuits cad system based on
redundant coding methods], Problemy razrabotki perspektivnykh mikro-i nanoelektronnykh
sistem (MES) [Problems of developing advanced micro-and nanoelectronic systems (MES)],
2020, No. 4, pp. 51-57.
14. Gurov S.I. Spektral'nyy R-kod s proverkami na chetnost' [Spectral R-code with parity checks],
Prikladnaya matematika i informatika: Tr. fakul'teta Vychislitel'noy matematiki i kibernetiki
MGU imeni M.V. Lomonosova [Applied mathematics and computer science: Proceedings of
the faculty of Computational mathematics and Cybernetics of Lomonosov Moscow state University],
2017, No. 55, pp. 91-96.
15. Tel'pukhov D.V., Zhukova T.D., Demeneva A.I., Gurov S.I. Skhema funktsional'nogo kontrolya
dlya kombinatsionnykh skhem na osnove R-koda [Circuit of functional control for
combinational circuits based on R-code], Problemy razrabotki perspektivnykh mikro-i
nanoelektronnykh sistem (MES) [Problems of developing advanced micro-and nanoelectronic
systems (MES)], 2018, No. 4, pp. 98-104.
16. Stempkovskiy A.L., Telpukhov D.V., Gurov S.I., Zhukova T.D., Demeneva A.I. R-code for
concurrent error detection and correction in the logic circuits, Young Researchers in Electrical
and Electronic Engineering (EIConRus), 2018 IEEE Conference of Russian. IEEE, 2018,
pp. 1430-1433.
17. Stempkovskiy A.L., Tel'pukhov D.V., Zhukova T.D., Demeneva A.I., Nadolenko V.V., Gurov S.I.
Sintez skhemy funktsional'nogo kontrolya na osnove spektral'nogo R-koda s razbieniem
vykhodov na gruppy [Synthesis of a concurrent error detection circuit based on the spectral
R-code with the partitioning of outputs into groups], Mikroelektronika [Microelectronics],
2019, Vol. 48, No. 4, pp. 284-294.
18. Stemkovskiy A.L., Tel'pukhov D.V., Demeneva A.I., zhukova T.D. Marshrut proektirovaniya
skhem funktsional'nogo kontrolya kombinatsionnykh ustroystv [Design flow of concurrent
error detection schemes for combinational circuits], Vestnik RGRTU [Vestnik of RSREU],
2018, No. 65, pp. 92-98.
19. Stempkovskiy A.L., Tel'pukhov D.V., Gurov S.I., Zhukova T.D., SHCHelokov A.N., Novikov
A.D. Sintez SFK na osnove LDPC koda s ispol'zovaniem mazhoritarnogo dekodirovaniya
[Synthesis method of fault-tolerant combination circuits with CED based on LDPC code],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No. 4
(206), pp. 195-206.
20. Gallager R. Low-density parity-check codes, IRE Transactions on information theory, 1962,
Vol. 8, No. 1, pp. 21-28.
21. Available at: https://ddd.fit.cvut.cz/prj/Benchmarks/ (accessed 31 August 2020).
Опубликован
2020-11-22
Выпуск
Раздел
РАЗДЕЛ II. АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ