Authors A. L. Beresnev, M. A. Beresnev, A. V. Bystritckii
Month, Year 06, 2018 @en
Index UDC 629.113
Abstract Paper is devoted to research the IC engine control aspects that are not well-known, e.g. detonation. Authors propose to use this stochastic process as one of the ways to increase torque of internal combustion engine. Detonation combustion of air-fuel mixture can be used as a useful part of the work process and it is assumed that the combustion of air-fuel mixture in mixed mode can be controlled allowing to increase indicator characteristics. Using detonation along with deflagration moderately increases load upon engine parts and allows to use hardware with minor changes. In the beginning authors provide an overview of the know solutions and trends in the subject area, similar directions that use close mechanics and algorithms are shown, then peculiarities of the work process with detonation are discussed. A review of the papers did not reveal a known method of calculation for the combustion of a part of the fuel in the detonation mode, therefore, an assumption is made that allows the calculation of kinetics and heat dissipation in the combustion chamber with partial detonation. A stand for experimental confirmation of the assumptions, equipped with an original pressure sensor in the combustion chamber, allowing to fix the indicator diagram and detonation is developed. Combustion in detonation phase is examined, and conditions when ignition and critical pressure appears unburned mixture are explored. Approaches to development of the mathematical model for such combustion are proposed. Examples of the engine power and torque increase are given. In the conclusion authors make hypothesis concerning changes in air-fuel combustion properties and plan the next steps for problem research for combustion control.

Download PDF

Keywords Internal combustion engine; detonation; combustion.
References 1. Wang Z., Liu H., Reitz R.D. Knocking combustion in spark-ignition engines, Progress in Energy and Combustion Science, 2017, Vol. 61, pp. 78-112.
2. Zel'dovich Ya.B., Kompaneets A.S. Teoriya detonatsii [Detonation theory]. Moscow, 1955, 268 p.
3. Gowthaman S., Sathiyagnanam A.P. Performance and emission characteristics of homogeneous charge compression ignition engine–a review, International Journal of Ambient Energy, 2017, Vol. 38, No. 7, pp. 672-684.
4. Kalghatgi G. Knock onset, knock intensity, superknock and preignition in spark ignition engines, International Journal of Engine Research, 2017, pp. 1468087417736430.
5. Caton J.A. The interactions between IC engine thermodynamics and knock, Energy Conversion and Management, 2017, Vol. 143, pp. 162-172.
6. Mitrofanov V.V. Teoriya detonatsii [Detonation theory]. Novosibirsk: NGU, 1982, 92 p.
7. Patent RF 95106076/06 kl. F02B 10.11.97.
8. Patent RF RU2498095 27.07. 2011.
9. Hall C., Warren I. SAE Trans., 1955, 63.
10. Sokolik A.S. Sgoranie v transportnykh porshnevykh dvigatelyakh [Combustion in transport piston engines]. Moscow: Izd-vo AN SSSR 1951, 37 p.
11. Bulat P.V., Upyrev V.V. Detonatsiya i ee initsiirovanie – istoriya eksperimental'nogo, teoreticheskogo i chislennogo issledovaniya [Detonation and its initiation-history of experimental, theoretical and numerical research], Tekhnicheskie nauki – ot teorii k praktike: Sb. statey po materialam XLVIII-XLIX mezhdunar. nauch.-prakt. konf. [Technical Sciences-from theory to practice: Collection of articles on materials XLVIII-XLIX international. scientific and practical conference]. Novosibirsk: SibAK, 2015, No. 7-8 (44).
12. Bulat P.V. Udarnaya i detonatsionnaya volna s tochki zreniya teorii interferentsii gazodinamicheskikh razryvov – geometricheskiy smysl uravneniy gazovoy dinamiki sverkhzvukovykh techeniy [Shock and detonation wave from the point of view of the interference theory of gas – dynamic discontinuities-the geometric meaning of the equations of gas dynamics of supersonic flows], Fundamental'nye issledovaniya [Fundamental research], 2013, No. 10-9, pp. 1951-1954.
13. Sharoglazov B.A., Farafontov M.F., Klement'ev V.V. Teoriya rabochikh protsessov i modelirovanie protsessov v dvigatelyakh vnutrennego sgoraniya [Theory of working processes and modeling of processes in internal combustion engines]. Chelyabinsk: Izd-vo YuUr-GU, 2004.
14. Aronov D.M., Mast V.S. Avtomobil'nyy transport [Road transport], 1956, No. 12.
15. Levin V.A., Markov V.V. Issledovanie vozniknoveniya detonatsii pri kontsentrirovannom podvode energii [Investigation of the occurrence of detonation in a concentrated energy supply], Fizika goreniya i vzryva [Physics of combustion and explosion], 1975, Vol. 2, No. 4,
pp. 623-629.
16. Levin V.A., Markov V.V., Osinkin S.F. Initsiirovanie detonatsii porshnem v smesi vodoroda s vozdukhom [Initiation of piston detonation in a mixture of hydrogen and air], Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1981, Vol. 258, No. 2, pp. 288-291.
17. Beresnev M.A. Metod opredeleniya ugla operezheniya zazhiganiya dlya upravleniya DVS na binarnom toplive: diss. … kand. tekhn. nauk [Method for determining the ignition advance angle for controlling the internal combustion engine on binary fuel: cand. of eng. sc. diss.]. Volgograd: VolgGTU, 2013, 150 p.
18. Nazoktabar M. et al. Developing a multi-zone model for a HCCI engine to obtain optimal conditions using genetic algorithm, Energy Conversion and Management, 2018, Vol. 157,
pp. 49-58.
19. Beresnev M.A., Beresnev A.L. Upravlenie sostavom binarnogo topliva dlya uluchsheniya pokazateley DVS [Management of the composition of binary fuel to improve the performance of ice], AvtoGazoZapravochnyy kompleks + Al'ternativnoe toplivo [Gas filling complex + Alternative fuel], 2012, No. 3 (63), pp. 7-10.
20. Beresnev A.L., Beresnev M.A. Perspektivy ispol'zovaniya novykh vidov binarnykh topliv dlya dvigateley vnutrennego sgoraniya [Prospects for the use of new types of binary fuels for internal combustion engines], Mezhdunarodnoe nauchnoe izdanie «Sovremennye fundamental'nye i prikladnye issledovaniya» [International scientific publication "Modern fundamental and applied research"], 2016, No. 3 (22), pp. 14-25.
21. Puškár M., Bigoš P., Puškárová P. Accurate measurements of output characteristics and detonations of motorbike high-speed racing engine and their optimization at actual atmospheric conditions and combusted mixture composition, Measurement, 2012, Vol. 45, No. 5, pp. 1067-1076.
22. Sanders S.T. et al. Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines, Proceedings of the Combustion Institute, 2000, Vol. 28, No. 1, pp. 587-594.
23. Song J. et al. Performance of a controllable premixed combustion engine fueled with dimethyl ether, Energy conversion and management, 2004, Vol. 45, No. 13-14, pp. 2223-2232.
24. Midgley T., Boyd T.A. The chemical control of gaseous detonation with particular reference to the internal-combustion engine, Industrial & Engineering Chemistry, 1922, Vol. 14, No. 10, pp. 894-898.
25. Heiser W.H., Pratt D.T. Thermodynamic cycle analysis of pulse detonation engines, Journal of Propulsion and Power, 2002, Vol. 18, No. 1, pp. 68-76.

Comments are closed.