Article

Article title NUMERICAL INVESTIGATION OF POSSIBILITY OF THE AXISYMMETRIC BODY APPLICATION IN HEATING
Authors N. N. Chernov, A. V. Palii
Section SECTION III. METHODS AND MEANS OF MANAGEMENT AND CONTROL
Month, Year 06, 2018 @en
Index UDC 658.51.011
DOI
Abstract This article presents the results of a numerical study of possibility of using an optimized body shape with minimal aerodynamic drag force as a heat sink in a convective gas flow. The aerodynamic characteristics and, in particular, the nature of the flow around the bodies of the simplest forms represent a great scientific andpractical interest. Bodies of complex shape can always be represented as a set of simpler ones, for which it is easy to investigate and calculate flow paths, on the basis of which analytical methods for calculating aerodynamic characteristics are compiled. A computational experiment was conducted in the Ansys Fluent software. The conditions of the experiment (comparison of heat-removing bodies) in numerical modeling are the persistence of the following: the volume and shape of the working area; distances from sources, drains and centers of bodies; aerodynamic velocity; masses of bodies compared; thermal power source and other parameters besides the shape of the surface. The resulting optimized body shape coincides with the current lines, which is the main advantage, since there is no separation from the flow. Thus, the entire surface area will be the effective in the heat sink, unlike other known forms of bodies, due to which the temperature of the heat-loaded element placed in the center of the heat sink will decrease.

Download PDF

Keywords Numerical simulation, heat and mass transfer, aerodynamic flow, temperature surfaces, aerodynamic resistance, optimized shape of the heat-sink, computation experiment.
References 1. Higham N.J. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2002, 320 p.
2. Houghton E.L., Carpenter P.W., Collicott Steven H., Valentine Daniel T. Aerodynamics for Engineering Students. Elsevier Ltd, 2013, 717 p.
3. Alex Townsend. A graduate introduction to numerical methods: From the Viewpoint of Backward Error Analysis. Springer, New York, Heidelberg, 2013, 252 p.
4. Jamshid Ghaboussi, Xiping Steven Wu. Numerical Methods in Computational Mechanics. CRC Press, 2016, 313 p.
5. Gierens K., Karcher B., Mannstein H., and Mayer B. Aerodynamic Contrails: Phenomenology and Flow Physics, Journal of theatmospheric sciences, 2009, Vol. 66, pp. 217-226.
6. Chernov N.N., Paliy A.V., Saenko A.V., Maevskiy A.M. Issledovanie metoda optimizatsii formy tela dlya umen'sheniya sily aerodinamicheskogo soprotivleniya v potoke gaza [Study of the method of optimization of the body shape to reduce the aerodynamic drag force in the gas flow], Pis'ma v ZhTF [Technical Physics Letters], 2018, Vol. 44, Issue 8, pp. 29-34.
7. Houghton E.L., Carpenter P.W. Aerodynamics for Engineering Students. Designs and Patents Act, 1988, 614 p.
8. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007, 517 p.
9. Strang G. Introduction to Linear Algebra. Wellesley, MA: Wellesley–Cambridge Press, 2009, 372 p.
10. Paliy A.V. Massoperenos i osnovnoe uravnenie aerodinamiki [Mass transfer and basic equations of aerodynamics]. Taganrog: Izd-vo TTI YuFU, 2012, 192 p.
11. Chernov N.N., Paliy A.V., Saenko A.V., Bespoludin V.V. Issledovanie raspredeleniya temperaturnogo polya ot tochechnogo istochnika tepla v konvektivnom potoke chislennymi metodami [Investigation of the temperature field distribution from a point source of heat in a convective flow by numerical methods], Inzhenernyy vestnik Dona [Engineering journal of Don], 2017, No. 3.
12. Chernov N.N., Paliy A.V., Saenko A.V. Issledovanie effektivnosti teplootvodyashchey poverkhnosti ob"emnogo tela s vnutrennim teplonagruzhennym istochnikom v aerodinamicheskom potoke [Study of the efficiency of the heat-conducting surface of a bulk body with an internal heat-loaded source in the aerodynamic flow], Inzhenernyy vestnik Dona [Engineering journal of Don], 2017, No. 4.
13. Petrov K.P. Aerodinamika tel prosteyshikh form [Aerodynamics of bodies of the simplest forms]. Moscow: Izd-vo Faktorial, 1998, 432 p.
14. Garbuzov V.M., Ermakov A.L., Kublanov M.S., Tsipenko V.G. Aeromekhanika [Aeromechanics]. Moscow: Transport, 2000, 287 p.
15. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid and gas mechanics]. Moscow: Drofa, 2003, 840 p.
16. Borisov A.V., Kuznetsov S.P., Mamaev I.S., Tenenev V.A. Opisanie dvizheniya tela ellipticheskogo secheniya v vyazkoy neszhimaemoy zhidkosti s pomoshch'yu model'nykh uravneniy, rekonstruirovannykh na osnove obrabotki dannykh [Description of the motion of an elliptic cross-section body in a viscous incompressible fluid using model equations reconstructed on the basis of data processing], Pis'ma v ZhTF [Technical Physics Letters], 2016, Vol. 42, Issue 17, pp. 9-19.
17. Vetchanin E.V., Mamaev I.S., Tenenev V.A. The self-propulsion of a body with moving internal masses in a viscous fluid, Regular and Chaotic Dynamics, 2013, Vol. 18, pp. 100-117.
18. Aul'chenko S.M., Kaledin V.O., Shpakova Yu.V. Vynuzhdennye kolebaniy obolochek tel vrashcheniya, obtekaemykh vyazkoy zhidkost'yu [Forced vibrations of the shells of bodies of rotation, streamlined viscous liquid], Pis'ma v ZhTF [Technical Physics Letters], 2009, Vol. 35, Issue 3, pp. 33-39.
19. Lutchenkov L.S., Layne V.A. Modelirovanie i analiz teplovykh rezhimov apparatury [Modeling and analysis of thermal conditions of the equipment]. Saint Petersburg: GUT im. prof.
M.A. Bonch-Bruevicha, 1995, 355 p.
20. Moiseev V.F., Zaykov V.P. Vliyanie rezhima raboty termoelektricheskogo ustroystva na ego nadezhnost' [The influence of the mode of operation of the thermoelectric device reliability], Tekhnologiya i konstruirovanie v elektronnoy apparature [Technology and designing in electronic equipment], 2001, No. 4-5, pp. 30-33.
21. Djeu N. Laser cooling by spontaneous anti-Stokes scattering, Phys. Rev. Lett., 1981, Vol. 46, pp. 236-239.
22. Paliy A.V., Zamkov E.T., Serba P.V. Opredelenie tolshchiny pogranichnogo sloya pri obtekanii tela aerodinamicheskim potokom metodom elektrostaticheskoy analogii [Determination of the thickness of the boundary layer in the flow around the body by an aerodynamic flow method of electrostatic analogy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 1 (126), pp. 192-197.
23. Shabarov V.V. Primenenie sistemy ANSYS k resheniyu gidrogazodinamicheskikh zadach [Application of the system in ANSYS for solution of tasks of water and gas flows]. Nizhniy Novgorod, 2006, 108 p.
24. Paliy A.V., Zamkov E.T. Mekhanizm vozniknoveniya treniya i soprotivleniya tela v gazovom potoke [The mechanism of friction and resistance of the body in the gas stream], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 1 (126),
pp. 186-191.
25. Paliy A.V., Zamkov E.T., Buleyko V.G. Mekhanizm sozdaniya soprotivleniya ploskoy poverkhnosti v gazovom potoke tangentsial'noy sostavlyayushchey skorosti molekuly gaza [The mechanism of creation of resistance of a flat surface in a gas stream of a tangential component of speed of a molecule of gas], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, № 1 (138), pp. 197-202.

Comments are closed.