Article

Article title EXAMINATION OF RADIATION OF ACOUSTIC SIGNALS IN THE AIR ENVIRONMENT BY PARAMETRIC ARRAY WITH AN AMPLITUDE-MODULATED SIGNAL OF A PUMPING
Authors V. A. Voronin, E. A. Kazakova
Section SECTION I. METHODS AND MEANS OF ACOUSTIC MONITORING
Month, Year 06, 2018 @en
Index UDC 534.222.2
DOI
Abstract The features of the emission of acoustic signals in air by a parametric radiating array are discussed. The methods for the formation of waves interacting in a nonlinear medium are given and their advantages and disadvantages are revealed. To build a voice information system with a narrow sound beam, it was proposed to use a parametric array with an amplitude-modulated pump signal. To implement a parametric array in air, it is proposed to use highly sensitive loudspeakers in the radiation mode as transducers in the pump array. For a uniform distribution of acoustic energy at the surface of the pumping array is proposed to use acoustic horns. When calculating the parameters of the nonlinear interaction of acoustic waves, the passport data of the selected loudspeakers are used. An expression for calculating the amplitude modulation coefficient for a selected range of difference frequencies is derived. The influence of the amplitude modulation coefficient on the level of generation of secondary acoustic waves in space is shown. The results of the calculation of the axial distribution of sound pressure at various difference frequencies are given. Calculated the characteristics of the directivity of the pumping antenna. Theoretical calculations are confirmed by experimentally measured characteristics of the directivity of the pump array in air at different pump frequencies. Recommendations are given on the use of a parametric array for transmitting speech in air.

Download PDF

Keywords Parametric array; air environment; amplitude modulated signal; pump converter; nonlinearity.
References 1. Tan E., Ji P., Gan W. On preprocessing techniques for bandlimited parametric loudspeakers, Applied Acoustics, 2010, Vol. 71, pp. 486-492.
2. Boullosa R. R., Perez-Lopez A., Dorantes-Escamilla R., Rendon P.L. An airborne parametric arra, Applied Acoustics, 2016, Vol. 112, No. 3000, pp. 116-122.
3. Ju S. H., Kim Y., Near-field characteristics of the parametric loudspeaker using ultrasonic transducers, Applied Acoustics, 2010, Vol. 112, pp. 793-800.
4. Aoki S., Shimizu K., Itou K. Study of vertical sound image control with parametric loudspeakers. Study of vertical sound image control with parametric loudspeakers, Applied Acoustics, 2017, Vol. 116, ppp. 164-169.
5. Ji P., Hu W., Yang J., Development of an acoustic filter for parametric loudspeaker using phononic crystals, Ultrasonics, 2016, Vol. 67, pp. 160-167.
6. Shi C., Kajikawa Y., Gan W., Generating dual beams from a single steerable parametric loudspeaker, Applied Acoustics, 2015, Vol. 99, pp. 43-50.
7. Wu S., Huang C, Yang J. FPGA-based implementation of steerable parametric loudspeaker using fractional delay filter, Applied Acoustics, 2012, Vol. 73, pp. 1271-1281.
8. Aoki S., Toba T., Sound localization of stereo reproduction with parametric loudspeakers, Applied Acoustics, 2012, Vol. 73, pp. 1289-1295.
9. Sugibayashi Y, Kurimoto S, Morise M., Nishiura T. Three-dimensional acoustic sound field reproduction based on hybrid combination of multiple parametric loudspeakers and electrodynamic subwoofer, Applied Acoustics, 2012, Vol. 73, pp. 1282-1288.
10. Ye Ch., Kuang Z., Wu M., Yang J. Development of an Acoustic Filter for Parametric Loudspeaker in Air, Japanese Journal of Applied Physics, 2011, Vol. 11, pp. 182-188.
11. Castagnede B., Sahraoui S., Tournat V., Tahani N., Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface, Applied Acoustics, 2009, Vol. 337, pp. 693-702.
12. Yang J., Gan W. S, Tan K. S., Acoustic beamforming of a parametric speaker comprising ultrasonic transducers, Applied Acoustics, 2005, Vol. 125, pp. 91-99.
13. Ju H.., Kim Y., Near-field characteristics of the parametric loudspeaker using ultrasonic transducers, Applied Acoustics, 2010, Vol. 71, pp. 793-800.
14. Krasnenko N.P. Prizemnoe rasprostranenie zvukovykh voln v atmosfere [Surface propagation of sound waves in the atmosphere], Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems and Radioelectronics], 2013, No. 2 (28), pp. 86-94.
15. Krasnenko N.P. Metody i sredstva distantsionnogo akusticheskogo zondirovaniya atmosfery [Methods and tools for remote acoustic sensing of the atmosphere], Metody i ustroystva peredachi i obrabotki informatsii [Methods and devices for transmitting and processing information], 2009, No. 11, pp. 143-154.
16. Krasnenko N.P. Akusticheskoe zondirovanie atmosfery [Acoustic sounding of the atmosphere]. Novosibirsk: Nauka, 1986, 166 p.
17. Kulichkov S.N. Nelineynaya generatsiya nizkochastotnoy komponenty pri rasprostranenii v atmosfere intensivnoy Ekologiya, problemy primorskikh territoriy 150 modulirovannoy zvukovoy volny [Nonlinear generation of a low-frequency component during propagation in the atmosphere of an intense ecology, problems of coastal areas 150 of a modulated sound wave], Fizika atmosfery i okeana [Physics of the atmosphere and ocean], 1979, Vol. 15, No. 4, pp. 384-391.
18. Voronin V.A., Kuznetsov V.P., Mordvinov B.G., Tarasov S.P., Timoshenko V.I. Nelineynye i parametricheskie protsessy v akustike okeana [Nonlinear and parametric processes in ocean acoustics]. Rostov-on-Don: Rostizdat, 2007, 448 p.
19. Voronin V.A., Tarasov S.P., Timoshenko V.I. Gidroakusticheskie parametricheskie sistemy [Hydroacoustic parametric systems]. Rostov-on-Don: Rostizdat, 2004, 400 p.
20. Voronin V.A., Voronin A.V. Osobennosti vzaimodeystviya akusticheskikh voln v vozdushnoy srede [Features of the interaction of acoustic waves in air], Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2015, No. 4, pp. 115- 228.

Comments are closed.