Article

Article title INVESTIGATION OF THE DEMODULATOR OF MSK SIGNALS CONSTRUCTED ON ELEMENTS OF DISCRETE LOGIC
Authors Yu. A. Gelozhe, P. P. Klimenko, A. V. Maksimov, V. V. Petrenko
Section SECTION III. RADIO ENGINEERING AND COMMUNICATION
Month, Year 03, 2018 @en
Index UDC 629.78.05
DOI
Abstract The work is devoted to digital communication systems. The formation of signals manipulated by minimum shift keying (MSK) is considered. Signals with frequency manipulation and continuous phase are widely used in modern data transmission systems. Especially popular are the MSK signals, which has not only a continuous phase, but also a small modulation index of 0.5, which makes it possible to use them in radio data channels with filters of lumped selection, the bandwidth of which can be close to the clock frequency of the digital signal. Signals of this type are used in modern satellite navigation systems Compass, Galileo, GPS and GLONAS. The advantage of these signals is a slight parasitic amplitude modulation, even when the bandwidth of said narrowband filters is 5–10 % smaller than the clock frequency of the digital stream. The peculiarity of MSK signals is that for a single clock cycle the phase is linearly (without discontinuity) changed by an amount exactly equal to 90 °, which ensures its spectral efficiency. The system of encoding and decoding of a digital message has been defined, which makes it possible to greatly simplify the output stages of a demodulator of a quadrature signal with a shift. The demodulation of a signal manipulated by a minimum shift has been simulated. The study of the effect on the demodulator of "white" noise showed that for the error probability per message element equal to 10-4, the difference between the theoretical analysis and the simulation results is approximately 1.3 dB relative to the signal-to-noise ratio, which is explained by the effect of noise on the devices carrier recovery and clock synchronization..

Download PDF

Keywords Communication; demodulation; phase; frequency; spectrum; filtering; digit.
References 1. Prokis Dzh. Cifrovaya svyaz' [Digital communication]: transl. from engl., ed. by
D.D. Klovskogo. Moscow: Radio i svyaz', 2000, 800 p.
2. Sklyar B. Cifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie [Digital communication. Theoretical foundations and practical application]. 2nd ed.: transl. from engl. Moscow: Izd. dom «Vil'yams», 2003, 1104 p.
3. Krohin A.V., Belyaev V.Yu., Gorelikov A.V., Dryamov Yu.A., Murav'ev S.A. Metody modulyacii i priema cifrovykh chastotno-manipulirovannykh signalov s nepreryvnoy fazoy [Methods of modulation and reception of digital frequency-manipulated signals with a continuous phase], Zarubezhnaya radiotekhnika [Foreign radio engineering], 1982, No. 4, pp. 102-103.
4. Spilker Dzh. Cifrovaya sputnikovaya svyaz' [Digital satellite communication]. Moscow: Svyaz', 1979, 592 p.
5. Nezami M.K. RF Architectures and Digital Signal Processing Aspects of Digital Wireless Transceivers 2003.
6. Feer K. Besprovodnaya cifrovaya svyaz'. Metody modulyacii i rasshireniya spectra [Wireless digital communication. Modulation techniques and spread spectrum]: transl. from engl., ed. by V.I. ZHuravleva. Moscow: Izd-vo «Radio i svyaz'», 2000.
7. Galkin V.I. Cifrovaya mobil'naya radiosvyaz': ucheb. posobie dlya vuzov [Digital mobile radio: a textbook for universities]. Moscow: Goryachaya liniya – Telekom, 2007, 432 p.
8. Petrenko V.V., Gelozhe Yu.A. Formirovatel' signala modulirovannogo s minimal'nym sdvigom [Signal generator modulated with a minimum shift], Teoreticheskie i metodicheskie problemy effektivnogo funkcionirovaniya radiotekhnicheskikh sistem («Sistemotekhnika-2012»): Cb. nauchnykh statey [Theoretical and methodological problems of effective functioning of radio systems ("system Engineering-2012"): Collection of scientific articles] Issue. VI. Taganrog: YUFU, 2012.
9. Dayan Adiohel Guimaraes. Contributions to the understanding of the MSK modulations, Revesta Telecommunication. MAIO DE2008, Vol. 11, No. 01.
10. US Patent Mar. 25 2003. Optical MSK modulator. Douglas M. Gill, Hoboken, NJ (US).
11. Outting J. A Comparison of Modulation Techniques for Digital Radio, IEEE Transactions on communications, December 1979, Vol. COM 27, No. 12, pp. 1752-1762.
12. Mathwich R. The effect of Tandem Band and amplitude Limiting on the Eb/N0 performance of minimum (frequency) shift keying (MSK), IEEE Transactions on communications, October 1977, Vol. COM 22, No. 10, pp. 1525-1539.
13. Parhomenko N.G., Botashev B.M., Kolobanov P.M., Horuzhij S.G., Efimov V.V. Optimal'nyy algoritm vosstanovleniya nesushchey chastoty dlya signalov s manipulyaciey minimal'nym sdvigom [The optimal reconstruction algorithm of the carrier frequency for signals with minimum shift keying], Radiokontrol' [Radiocontrol], 1999, Issue 2, pp. 20-28.
14. Paolo Novilini and Giovanni Guasti. Clock Data Recovery Design Techniques for E1/T1 Based on Direct Digital Synthesis. Xilinx XAPP868 (v1.0) January 29, 2008.
15. Petrenko V.V., Gelozhe Yu.A. Demodulyator MSK signala [The demodulator of MSK signal], Teoreticheskie i metodicheskie problemy effektivnogo funkcionirovaniya radiotekhnicheskikh sistem» («Sistemotekhnika-2013»): Cb. nauchnykh statey [Theoretical and methodological problems of effective functioning of radio systems" ("System Engineering-2013"): Collection of scientific articles]. Issue VII. Taganrog: YUFU, 2013.
16. Petrenko V.V., Gelozhe Yu.A. Model' formirovatelya i demodulyatora MSK signala v MatLab [Model of MSK signal generator and demodulator in MatLab], Teoreticheskie i metodicheskie problemy effektivnogo funkcionirovaniya radiotekhnicheskikh sistem («Sistemotekhnika-2013»): Cb. nauchnykh statey [Theoretical and methodological problems of effective functioning of radio systems ("System Engineering-2013"): Collection of scientific articles]. Issue VII. Taganrog: YUFU, 2013.
17. Gelozhe Yu.A., Kibirev A.A., Vtulkin V.A., Gelozhe M.Yu. Formirovatel' signala [Signal conditioner]. Patent Rossii 1345366 H 04 L 27/10. 15.05.87. Taganrogskiy tekhnologicheskiy institut im. V.D. Kalmykova.
18. US Patent Apr. 6, 1982. Synchronization for MSK burst communications. Smith A. Rhodes, Falls Church, Va.
19. US Patent Apr. 15, 1986. MSK digital demodulator burst communications. Constantine Gumacos, Broomall Pa.; Nicola A. Macina, Somerville, N.J.
20. US Patent Jul. 3, 2007. Coherent demodulation of hopped MSK waveforms system and method. Eric O., Zuber, South Amana, IA (US); Terry Golubiewski, Marengo, IA (US).
21. US Patent Apr. 23, 2009. Correlation device and method for different modulation signals. Kunt-tso Chen, Fang-Yang Hsiang.
22. US Patent 7,729,440 B2 Jun. 1, 2010. Frequency modulator for digital transmission. Gerard Dussart, Saint Sebastian sur Loire (FR).
23. US Patent 7,881409 B2 Feb. 1, 2011. Demodulator, chip and method for digital demodulating an FSK signal. Maysam Ghovanloo, Relegh, NC (US); Khalil Najafi, Ann Arbobr, MI (US).

Comments are closed.