Article

Article title NUMERICAL SIMULATION OF THE HEAT REMOVAL BODY IN THE AERODYNAMIC FLOW IN THE PROCESS OF CONVECTIVE HEAT AND MASS TRANSFER
Authors A. V. Pribylsky, N. N. Chernov, A. V. Paliy
Section SECTION III. MODELING AND ARTIFICIAL INTELLIGENCE
Month, Year 02, 2018 @en
Index UDC 658.51.011
DOI 10.23683/2311-3103-2018-2-155-163
Abstract Numerical study of heat removal surface efficiency is described. The study was conducted in the Fluent processor in the universal software system of finite element analysis Ansys. It is based on the Navier-Stokes equations, heat conduction and continuity in the approximation for an incompressible fluid. The efficiency of the surface area of the heat removal body is estimated. We consider the influence of the relationship between the source and the heat receiver on the temperature of the heat-loaded source. Thermal energy is transferred by convective heat and mass transfer both between a solid and the medium, and in the medium itself. The natural convolution is realized when the medium moves freely due to the difference in the densities of its cold and hot regions. In this regard, for more efficient heat dissipation, it is necessary to ensure an uninterrupted flow around the heat sink by an aerodynamic flow. In the working area, with dimensions many times greater than the dimensions of the heat sink body, a plane-parallel aerodynamic flow is formed. In the region a point is fixed, which is the source of thermal energy and the center of mass of all the heat-conducting bodies under study. The end walls of the working area are the source and drain of the aerodynamic flow, on the side walls the slip condition and thermal insulation are fulfilled. At the entrance of the channel with a given speed and temperature, an air flow is flowing around the heat sink body with an internal point source of heat. Although various computational methods of working substance dynamics are currently developing quite rapidly, the modeling of currents at high speeds is fraught with difficulties that remain relevant today. We examined the ratio of the body surface temperature, taking into account the equivalence of the distribution of the thermal field from the source to the electrostatic charge field. We conclude that due to the narrowing of the area of heat flow in the heat removal body, most part of the heat removal body is ineffective. It is confirmed by the computational experiment in the Ansys Fluent system.

Download PDF

Keywords Numerical simulation; the Navier-Stokes equation; heat equation; the continuity equation; heat removal body; heat-loaded source; heat and mass transfer.
References 1. Cvetkov F.F., Grigor'ev B.A. Teplomassoobmen: ucheb. posobie dlya vuzov [Heat and mass transfer: textbook for universities]. 2nd ed. Moscow: Izd-vo MJeI, 2005, 550 p.
2. Lyashkov V.I. Teoreticheskie osnovy teplotekhniki: ucheb. posobie [Theoretical foundations of heat engineering: textbook]. Moscow: Mashinostroenie – 1, 2002, 260 p.
3. Cvetkov F.F., Kirimov R.V., Velichko V.I. Zadachnik po teplomassoobmenu [Task book on heat and mass transfer]. Moscow: Izd-vo. MJeI, 1997, 24 .
4. Ametistov E.V. Osnovy teorii teploobmena: ucheb. posobie [Fundamentals of heat transfer theory: tutorial]. Moscow: MJeI, 2000, 247 p.
5. Cvetkov F.F. Zadachnik po sovmestnym processam teplo- i massoobmena [The book combines the processes of heat and mass transfer], ed. by Velichko V.I. Moscow: Izd-vo MJeI, 1997, 24 p.
6. Cvetkov F.F., Salokhin V.I. Teploobmen izlucheniem. Zadachi i uprazhneniya [Heat transfer by radiation. Tasks and exercises], ed. by Dem'yanenko V.Yu. Moscow: Izd-vo MJeI, 1997, 64 p.
7. Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of heat transfer theory]. Moscow: Atomizdat, 1979, 416 p.
8. Lutchenkov L.S., Layne V.A. Modelirovanie i analiz teplovykh rezhimov apparatury [Modeling and analysis of thermal conditions of the equipment]. Saint Petersburg: GUT im. prof.
M.A. Bonch-Bruevicha, 1995, 355 p.
9. Shelest V.I., Kondrashev A.S. Konceptual'nyy algoritm teplofizicheskogo proektirovaniya radioelektronnykh sredstv [A conceptual algorithm for thermal design of electronic equipment], Tehnologiya i konstruirovanie v elektronnoy apparature [Technology and designing in electronic equipment], 2003, No. 5, pp. 26-27.
10. Okhrem V.G. Nekotorye modeli stacionarnykh termoelektricheskikh kholodil'nikov [Some models of stationary thermoelectric refrigerators], IFZh [Journal of Engineering Physics and Thermophysics], 2001, Vol. 74, No. 5, pp. 127-130.
11. Moiseev V.F., Zaykov V.P. Vliyanie rezhima raboty termoelektricheskogo ustroystva na ego nadezhnost' [The influence of the mode of operation of a thermoelectric device on its reliability], Tehnologiya i konstruirovanie v elektronnoy apparature [Technology and design in electronic equipment], 2001, No. 4-5, pp. 30-33.
12. Pis'mennyy E.N., Burley V.D. Vliyanie razrezki, povorotov i otgibki reber na teploaerodinamicheskie harakteristiki poverkhnostey teploobmena [The effect of cutting, turning and bending of ribs on the heat and aerodynamic characteristics of heat exchange surfaces], Promyshlennaya teplotehnika [Industrial heat engineering], 2003, Vol. 25, No. 1, pp. 10-16.
13. Pis'mennyy E.N., Baranyuk A.V. Teplootvodyashhaja poverhnost' s plastinchato-prosechnym orebreniem pri nizkoskorostnom obduve [Heat-conducting surface with plate-cut finning at low-speed airflow], Tehnologiya i konstruirovanie v elektronnoy apparature [echnology and design in electronic equipment], 2005, No. 4, pp. 43-45.
14. Paliy A.V., Zamkov E.T., Serba P.V. Opredelenie tolshhiny pogranichnogo sloya pri obtekanii tela aerodinamicheskim potokom metodom elektrostaticheskoy analogii [Determination of the boundary layer thickness during aerodynamic flow around the body by the method of electrostatic analogy], Izvestija YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 1, pp. 192-197.
15. Shabarov V.V. Primenenie sistemy ANSYS k resheniyu gidrogazodinamicheskikh zadach [System application ANSYS to solving water and gas flows task]. Nizhniy Novgorod, 2006, 108 p.
16. Paliy A.V., Zamkov E.T. Mekhanizm vozniknoveniya treniya i soprotivleniya tela v gazovom potoke [The mechanism of friction and resistance of the body in the gas stream], Izvestija JuFU. Tehnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No.1, pp. 186-191.
17. Paliy A.V., Zamkov E.T., Buleyko V.G. Mekhanizm sozdaniya soprotivleniya ploskoy poverkhnosti v gazovom potoke tangencial'noy sostavlyayushhey skorosti molekuly gaza [Mechanism of creation of resistance of a flat surface in a gas stream of a tangential component of speed of a gas molecule], Izvestija JuFU. Tehnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 1, pp. 197-202.
18. Perepeka V.I. Nekotorye voprosy kontaktnogo teploobmena elementov v RJeA [Some issues of pin heat transfer elements in the REA], Voprosy radioelektroniki. Ser. TRTO [Вопросы радиоэлектроники. Серия ТРТО], 1968, No.2, pp. 43-47.
19. Paliy A.V., Panatov G.S. Temperatura i teploperenos [Temperature and heat transfer]. Taganrog: Izd-vo TTI JuFU, 2009, 132 p.
20. Paliy A.V. Optimizaciya formy teplootvoda dlya teplonagruzhennogo elementa v usloviyakh teplomassoperenosa vozduha [Optimization of the heat sink form for a heat-loaded element in the conditions of air heat and mass transfer], Teplovye processy v tehnike [Thermal processes in engineering], 2015, No. 7, pp. 333-336.

Comments are closed.