Authors O. I. Il’in
Month, Year 02, 2018 @en
Index UDC 621.38-022.533
DOI 10.23683/2311-3103-2018-2-75-84
Abstract The article presents the results of studies of regularities in the carbon nanotubes growing modes influences by plasma enhanced chemical vapor deposition on the geometric dimensions and adhesion properties of nanotube arrays. The results of experimental studies of the effect of activation time, plasma power, temperature and growth time on the parameters of carbon nanotubes are presented. It is shown that exposure in an ammonia plasma leads to etching of Ni catalytic centers and a decrease in their diameter. With an increase in the "activation" time increases the probability of association of small catalytic centers into larger due to surface diffusion, which leads to an increase in diameter and decrease in the density of carbon nanotubes. It has been established that an increase of the plasma power up to 40 W promotes to complete removal of small catalytic centers and the formation of individual vertically aligned carbon nanotubes. "Activation" time of less than 5 sec promotes an increase in the catalytic centers adhesion to the substrate and allows controlling the growth mechanism. With an increase temperature to 675 ° C, simultaneous processes of sublimation and surface diffusion occur, which leads to a decrease in the diameter, height, and density of carbon nanotubes. Also, temperature increasing leads to an acceleration of the desorption of acetylene from the surface of the sample and the carbon-containing gas is evacuated by the vacuum system without reacting with the catalytic centers. It is established that the absence of a vector of electric field strength which determining the direction of growth of carbon nanotubes leads to the formation of a disoriented arrays of CNTs. It is shown that the management of technological modes makes it possible to growth arrays of carbon nanotubes of various types: interwoven, individual, branched and disoriented. Studies of the adhesion of experimental samples by atomic force microscopy have been carried out. It has been established that the greatest value of the adhesion force (11121 nN) is shown by aligned arrays of carbon nanotubes, which were grouped in bundles during the growing process with the diameter of individual nanotubes 51 nm, height 0.69 μm and density 69 μm-1. The results of the research can be used for creating adhesion coatings and mechanical contacts of high strength for the space industry and robotics, as well as for the creation of elements of carbon nanoelectronics.

Download PDF

Keywords Carbon nanotubes; plasma enhanced chemical vapor deposition; atomic-force microscope; adhesion coatings.
References 1. Qu L., Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties, Adv. Mater., 2007, Vol. 19, pp. 3844-3849.
2. Lau K., Bico J., Teo K., Chhowalla M., Amaratunga G., Milne W.I., McKinley G.H., Gleason K.K. Superhydrophobic carbon nanotube forests, Nano Letters, 2003, Vol. 3, No. 12, pp. 1701-1705,
3. Rouhrig M., Thiel M., Worgull M., Houlscher H. 3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces, Small, 2012, Vol. 8, No. 19,
pp. 3009-3015.
4. Autumn K., Liang Y.A., Hsieh S.T., Zesch W., Chan W.P., Kenny Th.W., Fearing R., Full R.J. Adhesive force of a single gecko foot-hair, Nature, 2000, Vol. 405, pp. 681-685.
5. Jeong H.E., Lee S.H., Kim P., Suh K.Y. High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, Vol. 313-314, pp. 359-364.
6. Majidi C., Groff R.E., Autumn K., Baek S., Bush B., Gravish N., Maboudian R., Maeno Y., Schubert B., Wilkinson M., Fearing R.S. High friction from a stiff polymer using micro-fiber arrays, Physical Review Letters, 2006, Vol. 97, pp. 076103.
7. Ge L., Sethi S., Ci L., Ajayan P.M., Dhinojwala A. Carbon nanotube-based synthetic gecko tapes, Proc. Nat. Acad. Sciences, 2007, Vol. 104, No. 26, pp. 10792-10795.
8. Qu L., Dai L., Stone M., Xia Z., Wang Z.L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off, Science, 2008, Vol. 322, pp. 238-242.
9. Yurdumakan B., Raravikar N.R., Ajayan P.M., Dhinojwala A. Synthetic gecko foot-hairs from multiwalled carbon nanotubes, Chemical Communications, 2005, Vol. 2005, pp. 3799-3801.
10. Ageev O.A., Blinov Yu.F., Il'ina M.V., Il'in O.I., Smirnov V.A., Tsukanova O.G. Issledovanie adgezii vertikal'no orientirovannykh uglerodnykh nanotrubok k podlozhke metodom atomno-silovoy mikroskopii [Study of adhesion of vertically oriented carbon nanotubes to the substrate by atomic force microscopy], Fizika tverdogo tela [Solid state physics], 2016, No. 2, pp. 301-306.
11. Greiner C., Campo A.D., Arzt E. Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir, 2007, Vol. 23, No. 7, pp. 3495-502.
12. Ageev O.A., etc. al. Development of new metamaterials for advanced element base of micro- and nanoelectronics, and microsystem devices, Springer Proceedings in Physics, 2016,
Vol. 175, pp. 563-580.
13. Il'in O.I., Klimin V.S., Rubashkina M.V., Sergienko K.S., Semenov A.S., Fedotov A.A., Chin' Van Myoy, Yanenko V.Yu. Termodinamicheskiy analiz vzaimodeystviya v sisteme Ni-Cr-Si pri vyrashchivanii uglerodnykh nanotrubok metodom khimicheskogo osazhdeniya iz gazovoy fazy [Thermodynamic analysis of interaction in the Ni-Cr-Si system for growing carbon nanotubes by chemical deposition from the gas phase], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 79-92.
14. Il’in O.I., Il’ina M.V., Rudyk N.N., Fedotov A.A., Ageev O.A. The growth temperature effect on vertically aligned carbon nanotubes parameters, Nanosystems: Physics, Chemistry, Mathematics, 2018, Vol. 9, No. 1, pp. 92-94.
15. Klimin V.S., Il’ina M.V., Il’in O.I., Rudyk N.N., Ageev O.A. Research of influence of the underlayer material on the growth rate of carbon nanotube arrays for manufacturing non-volatile memory elements with high speed, IOP Conf. Series: Journal of Physics: Conf. Series, 2017, Vol. 917, pp. 092023.
16. Ageev O.A., Belyaev A.E., Boltovets N.S., Konakova R.V., Milenin V.V., Pilipenko V.A. Fazy vnedreniya v tekhnologii poluprovodnikovykh priborov i SBIS [The implementation phase in the technology of semiconductor devices and VLSI]. Khar'kov: NTK “Institut monokristallov”, 2008, 392 p.
17. Dostanko A.P., Avakov S.M., Ageev O.A. i dr. Tekhnologicheskie kompleksy integrirovannykh protsessov proizvodstva izdeliy elektroniki [Technological complexes of integrated processes of production of electronic products]. Minsk: Belorusskaya nauka, 2016, 251 p.
18. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nanotekhnologii» YuFU [Сomprehensive approach to technological equipping for r&d center. The experience in implementing of SEC «nanotechnology» SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
19. Ageev O.A., Bykov V.A. Tekhnologicheskoe oborudovanie dlya sozdaniya nanosistemnoy tekhniki [Technological equipment for the creation of nanosystem technology], Nanotekhnologii Ekologiya Proizvodstvo [Nanotechnology Ecology Production], 2010, No. 5, pp. 68-70.
20. Konoplev B.G., Ageev O.A. Elionnye i zondovye nanotekhnologii dlya mikro- i nanosistemnoy tekhniki [Leonnie and probe nanotechnologies for micro- and nanosystem technology], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 12 (89),
pp. 165-175.
21. Ageev O.A., Il'in O.I., Klimin V.S., Rubashkina M.V., Smirnov V.A., Syurik Yu.V., Tsukanova O.G. Issledovanie vozmozhnosti sozdaniya biomimicheskikh adgezionnykh pokrytiy na osnove massiva vertikal'no orientirovannykh uglerodnykh nanotrubok [Study of the possibility of creating biomimic adhesive coatings based on an array of vertically oriented carbon nanotubes], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 58-67.
22. Ageev O.A., Ilin O.I., Kolomiytsev A.S., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Investigation of effect of geometrical parameters of vertically aligned carbon nanotubes on their mechanical properties, Advanced Materials Research, 2014, Vol. 894, pp. 355-359.
23. Ageev O.A., Il'in O.I., Rubashkina M.V., Smirnov V.A., Tsukanova O.G. Opredelenie udel'nogo soprotivleniya vertikal'no orientirovannykh uglerodnykh nanotrubok metodami skaniruyushchey zondovoy mikroskopii [Determination of specific resistance of vertically oriented carbon nanotubes by scanning probe microscopy], Zhurnal tekhnicheskoy fiziki [Journal of technical physics], 2015, Vol. 85, No. 7, pp. 100-106.
24. Il'ina M.V., Il'in O.I., Blinov Yu.F., Smirnov V.A., Kolomiytsev A.S., Fedotov A.A., Konoplev B.G., Ageev O.A. Memristive switching mechanism of vertically aligned carbon nanotubes, Carbon, 2017, Vol. 123, pp. 514-524.
25. Ageev O.A., Bykov A.V., Kolomiytsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Tsukanova O.G. Issledovanie metodov modifikatsii zondov dlya atomno-silovoy mikroskopii kriticheskikh razmerov osazhdeniem uglerodnykh nanotrubok [The study of methods of modification of probes for atomic force microscopy critical size by the deposition of carbon nanotubes], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of Universities. Electronics], 2015, Vol. 20, No. 2, pp. 127-136.

Comments are closed.