Article

Article title DEFLECTION AND EIGEN FREQUENCY SIMULATION OF V-SHAPED POLYSILICON CANTILEVER
Authors Al.V. Bykov
Section SECTION IV. MODELING AND DESIGN
Month, Year 10, 2016 @en
Index UDC 629.052.7
DOI 10.18522/2311-3103-2016-10-129138
Abstract The goal of the work is to develop a model of V-shaped polysilicon cantilever and obtain sensitive dependences on cantilever geometrical parameters. This allows optimizing the design of cantilevers for atomic force microscopes with optical registration system when polycrystalline silicon is selected instead of the single crystal silicon as the material of the beam. The paper pre-sents the results of microcantilever modeling using the finite element method. The design of the cantilever, which includes a triangular or V-shaped beam and probe, has been considered. Polysilicon beam is fixed on the one hand, and has the following initial size: thickness of 2 µm, width of 14 µm and length of 100 µm. The probe with height of 10 µm, base radius 2 µm, and an apex radius 30 nm is located on the free side edge of the cantilever. The model takes into account a non-rectangular shape of the free edge of the cantilever that is formed during the probe fabrication. The dimensions of the probe and material parameters have been fixed. The simulation of the cantilever’s length and thickness as well as the pressing force on the deflection and eigen frequen-cies have been performed. The length, thickness and applied force varied from 50 to 200 µm, 0.5 to 3 µm and 0.05 to 1.1 µN, respectively. The static deflection of 4-86 nm and the first three eigen frequencies of 37–6907 kHz have been computed. The results obtained in the work will allow de-veloping the recommendations for the design of a V-shaped cantilever, its optimization, as well as identifying the preliminary design and technological features.

Download PDF

Keywords Nanosystems; cantilever; beam deflection; polycrystalline silicon; atomic force microscopy.
References 1. Bhushan B. Springer Handbook of Nanotechnology. Heidelberg: Dordrecht: London: New York: Springer, 2010, 1964 p.
2. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope, Jpn. Phys. Rev. Lett., 1986,
Vol. 56, No. 9, pp. 930-933.
3. Ageev O.A., Belyaev A.E., Boltovets N.S., Konakova R.V., Milenin V.V., Pilipenko V.A. Fazy vnedreniya v tekhnologii poluprovodnikovykh priborov i SBIS [The implementation phase in the technology of semiconductor devices and VLSI]. Khar'kov: NTK “Institut monokristallov”, 2008, 392 p.
4. Ageev O.A., Syurik Yu.V., Klimin V.S., Fedotov A.A. Poluchenie nanokompozitnykh po-limernykh materialov, modifitsirovannykh uglerodnymi nanostrukturami, na osnove NANOFAB NTK-9 [Production of nanocompound polymeric materials based on multifunc-tional modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 135-142.
5. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiytsev A.S., Il'in O.I. Modifikatsiya zondovykh datchikov-kantileverov dlya atomno-silovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Modification of the probe-cantilever for atomic force microscopy by the method of fokusira-EN ion beams], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2011, No. 4, pp. 4-8.
6. Ageev O.A., Kolomiytsev A.S., Bykov A.V., Smirnov V.A., Kots I.N. Fabrication of advanced probes for atomic force microscopy using focused ion beam, Microelectronics Reliability, 2015, Vol. 55, Issue 9-10, pp. 2131-2134.
7. Ageev O.A., Kolomiitsev A.S., Konoplev B.G. Formation of Nanosize Structures on a Silicon Substrate by Method of Focused Ion Beams, Semiconductors, 2011, Vol. 45, No. 13, pp. 89-92.
8. Ageev O.A., Bykov A.V., Kolomiytsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Tsukanova O.G. Issledovanie metodov modifikatsii zondov dlya atomno-silovoy mikroskopii kriticheskikh razmerov osazhdeniem uglerodnykh nanotrubok [The study of methods of modi-fication of probes for atomic force microscopy critical size by the deposition of carbon nano-tubes], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of higher educational institutions. Electronics], 2015, Vol. 20, No. 2, pp. 127-136.
9. Ageev O.A., Balakirev S.V., Bykov Al.V. [et al]. Development of new meta-materials for ad-vanced element base of micro- and nanoelectronics, and microsystem devices, In: Advanced Materials – Manufacturing, Physics, Mechanics and Applications. Parinov, Chang, Topolov (Eds.). Springer International Publishing Switzerland, 2016, pp. 563-580.
10. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V. Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Research of wet SIO2 sacrificial layer etching for mems structures forming based on poly-SI*/SIO2/SI] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2 (163), pp. 236-245.
11. Gusev E.Yu., Zhityaeva Yu.Yu., Bykov A.V., Bespoludin V.V. Issledovanie elektrofizicheskikh svoystv plenok polikristallicheskogo kremniya dlya sozdaniya mikroelektromekha-nicheskikh sistem [Research of electrophysical properties of polycrystalline silicon films for mems struc-tures forming], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9 (170), pp. 126-134.
12. Bykov A.V. Konstruktivno-tekhnologicheskie osobennosti kantileverov dlya atomno-silovoy mikroskopii [Design and technology features cantilevers for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 4 (153), pp. 141-151.
13. Ansari M.Z., Cho C., Kim J. [et al.] Comparison between Deflection and Vibration Character-istics of Rectangular and Trapezoidal profile Microcantilevers, Sensors, 2009, Vol. 9,
pp. 2706-2718.
14. Senturia S.D. Microsystem design. Kluwer academic publishers: New York: Boston: Dordrecht: London: Moscow, 2002, 689 p.
15. Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bykov A.V., Zhityaeva Yu.Yu. Optimizatsiya konstruktsii kontaktno-metallizatsionnoy sistemy p'ezokantilevera dlya atomno-silovoy mikroskopii [Structural optimization of the contact system of the piezocantilever for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 158-165.
16. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nano-tekhnologii» YuFU [Comprehensive approach to technological equipping for r&d center. The experience in implementing of SEC «Nanotechnology» SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
17. Ageev O.A., Bykov V.A. Tekhnologicheskoe oborudovanie dlya sozdaniya nanosistemnoy tekhniki [Technological equipment for the creation of nanosystem technology], Nanotekhnologii. Ekologiya. Proizvodstvo [Nanotechnology. Ecology. Production], 2010,
No. 5, pp. 68-70.
18. Dostanko A.P., Avakov S.M., Ageev O.A. [i dr.]. Tekhnologicheskie kompleksy integrirovannykh protsessov proizvodstva izdeliy elektroniki [Technological systems integrated production processes of electronics products]. Minsk: Belorusskaya nauka, 2016, 251 p.
19. Sechenov D.A., Kasimov F.D., Agaev F.G., Svetlichnyy A.M., Ageev O.A. Aktiviruemye protsessy mikroelektronnoy tekhnologii [Activated processes in microelectronic technology]. Baku: Izd-vo ELM, 2000, 258 p.
20. Ageev O.A., Dostanko A.P., Tolochko N.K., Bordusov S.V. Intensifikatsiya protsessov formirovaniya tverdotel'nykh struktur kontsentrirovannymi potokami energii [Intensification of processes of formation of solid structures by the concentrated streams of energy]. Minsk: Bestprint, 2005, 682 p.
21. Anshu M.G., Dinesh S.R. Modelling and Eigen frequency analysis of piezoelectric cantilever beam, International Journal of Engineering Science, 2014, Vol. 3, No. 7, pp. 52-59.
22. Zhang Y., Murphy K.D. Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope, Scanning Probe Microscopy in Nanoscience and Nanotechnology, 2009, pp. 225-257.
23. Shaik R.S., Sai V., Logesh S. Modelling and simulation of cantilever sensor using COMSOL Multiphysics, International Journal of engineering, technology, management and research, 2014, No. 1, pp. 6-8.
24. Sader J.E. Parallel beam approximation for V-shaped atomic force microscope cantilever, Review of Scientific Instruments, 1995, Vol. 66, pp. 4583-4587.
25. Bykov A.V. Modelirovanie otkloneniya kantilevera na osnove polikristallicheskogo kremniya [Simulation of the polycristalline siliconcantilever deflection], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9 (170), pp. 144-153.

Comments are closed.