Article

Article title SIMULATION OF THE ELECTRIC FIELD DISTRIBUTION IN NANOSTRUCTURES WITH RECTANGULAR CROSS-SECTION FIELD EMISSION CATHODE BASED ON GRAPHENE FILM ON SIC
Authors A.M. Svetlichnyi, O.B. Spiridonov, I.L. Jityaev, E.Yu. Volkov, M.V. Demyanenko
Section SECTION IV. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 02, 2015 @en
Index UDC 621.385.21
DOI
Abstract The article examines the development of the nanosize field emission cathodes, the using of which suggests the possibility of transition to terahertz nanoelectronics. A design of a rectangular field emission cathode was proposed. The simulations results of the electric field distribution in the interelectrode gap of the field emission cell was presented. The simulation was performed, when the potential difference between the anode and the cathode 4 V, by using the software platform COMSOL Multiphysics 4.4, wherein systems of nonlinear differential equations in partial derivatives are solves by finite element method. An adaptive algorithm of the grid constructing is used, he is improved the accuracy of mathematical calculations by increasing the density of the finite element in the complex geometry of the nanosize interelectrode space. Silicon carbide with graphene film on its surface was chosen as a material of field emission cathode, because carbonaceous materials have low threshold voltage characteristic of the start emission, resistance to cathode sputtering, high temperature and ionizing radiation. The influence of geometrical parameters of the field emission cell on the field emission characteristics was investigated. The dependence of the electric field strength from the interelectrode spacing (10–50 nm), thickness (10-200 nm) and height of the cathode (50 nm – 2.5 μm) was obtained and analyzed based on the simulation results and analytical calculations. The field strength (~108 V/m) is increased 2–4 times when reducing the width of the cathode and interelectrode distance to 10 nm. Graphs of the electric field distribution along the length of a field emission cathode with a rectangular cross-section was plotted, of which the presence of the negative edge effects in the form of 1,5–2 times increasing the value of the electric field strength.

Download PDF

Keywords Simulation; field emission cathode; graphene; silicon carbide; electric field strength.
References 1. Obraztsov A.N., Pavlovskiy I.Yu., Volkov A.P. Avtoelektronnaya emissiya v grafitopodobnykh plenkakh [Field emission in graphite-like films], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2001, Vol. 71, Issue 11, pp. 89-95.
2. Lupekhin S.M., Ibragimov A.A. Polevaya elektronnaya emissiya katodov iz uglerodnykh nitey s nanostrukturnoy emissionnoy poverkhnost'yu [Field electron emission cathodes made of carbon fibres with nanostructured emission surface], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2011, Vol. 81, Issue 6, pp. 109-112.
3. Sheshin E.P. Struktura poverkhnosti i avtoemissionnye svoystva uglerodnykh materialov [The surface structure and field emission properties of carbon materials]. Moscow: Izd-vo MFTI, 2001, 288 p.
4. Gao J.H. Zhang L., Zhang B.L. et al. Fabrication of globe-like diamond microcrystalline aggregate films and investigation of their field emission properties, Thin Solid Films, 2008, Vol. 516, pp. 7807-7811.
5. Konakova R.V., Okhrimenko O.B., Svetlichnyy A.M. i dr. Otsenka vozmozhnosti izgotovleniya avtoemissionnykh nanostruktur na osnove grafena [To assess the possibility of manufacturing a field emission nanostructures based on grapheme] Nanostrukturnye materialy – 2010:
Belarus' – Rossiya – Ukraina (NANO-2010): materialy II
Mezhdunarodnoy nauchnoy konferentsii (Kiev, 19-22 oktyabrya, 2010) [Nanostructured materials – 2010: Belarus – Russia– Ukraine (NANO-2010): proceedings of the II International scientific conference (Kyiv, October 19-22, 2010)]. Kiev: Izd-vo. Institut metallofiziki im. G.V. Kurdyumova, 2010, pp. 249.
6. Okhrimenko O.B. Konakova R.V. Svetlichnyy A.M i dr. Otsenka avtoemissionnykh svoystv nanostruktur na osnove karbida kremniya i grafena [Evaluation of field emission properties of nanostructures based on silicon carbide and grapheme], Nanosistemy [Nanosystems], 2012,
Vol 10, No. 2, pp. 335-342.
7. Novoselov K.S., Geim A.K., Morozov S.V. et al. Two-dimensional gas of massless Dirac fermions in grapheme, Nature, 2005, Vol. 438, pp. 197-200.
8. Chen Zh., Lin Yu-M., Rooks M.J. et al. Graphene Nano-Ribbon Electronics, Physica E: Low-dimensional Systems and Nanostructures, 2007, Vol. 40, No. 2, pp. 228-232.
9. Lee C. Wei X., Kysar J.W. et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, Vol. 321, No. 5887, pp. 385-388.
10. Konakova R.V., Svetlichnyy A.M., Volkov E.Yu. i dr. Sravnitel'nye kharakteristiki spektrov kombinatsionnogo rasseyaniya sveta plenok grafena na provodyashchikh i poluizoliruyushchikh podlozhkakh 6H-SiC [Comparative characteristics of the spectra of Raman scattering of graphene films on conductive and politology substrate 6H-SiC], Fizika i
tekhnika poluprovodnikov [Semiconductors], 2013, Vol. 47, Issue 6, pp. 802-804.
11. Sorokin P.B., Chernozatonskiy L.A. Poluprovodnikovye nanostruktury na osnove grafena [Semiconductor nanostructures based on graphene], Uspekhi fizicheskikh nauk [PhysicsUspekhi], 2013, Vol. 183, No. 2, pp. 113-132.
12. Kaushik V., Shukla A.K., Vankar V.D. Improved electron field emission from metal grafted graphene composites, Carbon, 2013, Vol. 62, pp. 337-345.
13. Fursey G.N., Petrick V.I., Novikov D.V. Low-threshold field electron emission from carbon nanoclusters formed upon cold destruction of graphite, Technical Physics, 2009, Vol. 54, No. 7, pp. 1048-1051.
14. Vartapetov S. Il'ichev E., Nabiev R. i dr. Emissionnaya elektronika na osnove nano- (mikro-) strukturirovannykh uglerodnykh materialov [Emission electronics-based nano- (micro-) structured carbon materials], Nanoindustriya [Nanoindustry], 2009, No. 4, pp. 12-18.
15. Dyuzhev N.A. Kozlov A.I., Makhov V.I. i dr. Bystrodeystvie mikroelektronnykh struktur s avtoelektronnymi katodami [The performance of the microelectronic structures with field cathodes], Mikroelektronika [Russian Microelectronics], 1990, Vol. 19, Issue 5, pp. 478-485.
16. Eletskiy A.V. Mekhanicheskie svoystva uglerodnykh nanostruktur i materialov na ikh osnove [Mechanical properties of carbon nanostructures and materials on their basis], Uspekhi fizicheskikh nauk [Physics Uspekhi], 2007, Vol. 177, No. 3, pp. 233-274.
17. Karachinov V.A., Toritsin S.B., Karachinov D.V. Effekt samosopryazhennoy perforatsii amorfnykh sloev karbida kremniya [The effect of self-adjoint perforation of amorphous layers of silicon carbide], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2004, Vol. 74, Issue 12, pp. 96-97.
18. Lebedev A.A. Kozlovskiy V.V., Strokan N.B. i dr. Radiatsionnaya stoykost' shirokozonnykh poluprovodnikov (na primere karbida kremniya) [Radiation resistance wide-band gap semiconductor (for example silicon carbide)], Fizika i tekhnika poluprovodnikov [Semiconductors], 2002, Vol. 36, Issue 11, pp. 1354-1359.
19. Zhityaev I.L. Vliyanie konstruktsii ostriynykh nanorazmernykh avtokatodov na osnove plenok grafena na karbide kremniya na emissionnye kharakteristiki [The effect of eld emission structures of nanoscale autocatalog based on graphene films on silicon carbide on the emission characteristics of], X Ezhegodnaya nauchnaya konferentsiya studentov i aspirantov bazovykh kafedr Yuzhnogo nauchnogo tsentra RAN: tezisy dokladov (g. Rostov-na-Donu, 14–29 aprelya 2014 g.) [X Annual scientific conference of students and postgraduates of basic departments of the southern scientific center of Russian Academy of Sciences: abstracts (Rostov-on-don, 14-29 April 2014)]. Rostov-on-Don: Izd-vo YuNTs RAN, 2014, pp. 138-139.
20. Zhityaev I.L., Svetlichnyy A.M., Dem'yanenko M.V. Osobennosti modelirovaniya avtoemissionnykh katodov v forme ostriya na osnove plenok mul'tigrafena na karbide kremniya [Features simulation of field emission cathodes in the form of a spike-based films multigravida on silicon carbide], Nanotekhnologii v elektronike i MEMS: trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii i molodezhnoy shkoly-seminara (g.Taganrog, 20–25 oktyabrya 2014 g.) [Nanotechnologies in electronics and MEMS: proceedings of International scientific-technical conference and youth conference (Taganrog, 20-25 October 2014)]. Taganrog: Izd-vo Yuzhnogo federal'nogo universiteta, 2014, pp. 49-50.
21. Mayer A., Lambin Ph. Quantum-mechanical simulations of field emission from carbon nanotubes, Carbon, 2002, Vol. 40, pp. 429-436.
22. Wang X.Q., Wang M., Li Z.H. et al. Modeling and calculation of field emission enhancement factor for carbon nanotubes array, Ultramicroscopy, 2005, Vol. 102, No. 3, pp. 181-187.
23. Wang X.Q., Wang M., Ge H.L. et al. Modeling and simulation for the field emission of carbon nanotubes array, Physica E: Low-dimensional Systems and Nanostructures, 2005, Vol. 30, No. 1-2, pp. 101-106.
24. Watcharotone S., Ruoff R.S., Read F.H. Possibilities for graphene for field emission: modeling studies using the BEM, Physics procedia, 2008, Vol. 1, pp. 71-75.
25. Tong J., Li L., Chu N.J. et al. Optimization for field emission from carbon nanotubes array by Fowler–Nordheim equation, Physica E, 2008, Vol. 40, pp. 3166-3169.
26. Le Febre A.J., Abelmann L., Lodder J.C. Field emission at nanometer distances for high-resolution positioning, Journal of Vacuum Science & Technology, 2008, Vol. 26, pp. 724-729.
27. Rezeq M. Finite element simulation and analytical analysis for nano field emission sources that terminate with a single atom: A new perspective on nanotips, Applied Surface Science, 2011, Vol. 258, pp. 1750-1755.
28. Mamta Khanejaab, Swati Singhb, Santanu Ghosh et al. Modeling Field Emission from Single-Tip Carbon Nanotube in Triode Configuration, International Journal of Green Nanotechnology, 2013, Vol. 4, No. 4, pp. 547-552.
29. Navrotskiy I.A., Burtsev A.A. Osobennosti modelirovaniya mnogoostriynykh katodov s peremennoy periodicheskoy strukturoy [Simulation features mnogoserijnyj cathodes with variable periodic structure], Antenny [Antennas], 2013, No. 7, pp. 63-65.
30. Lytkin L.K., Filatov G.A., Tsepilov G.V. Raschet avtoemissionnykh struktur s pomoshch'yu ELCUT [Calculation of field emission structures using ELCUT], Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2014, No. 5. Available at: http://www.science-education.ru/119-15041 (Accessed 26 December 2014).
31. Gusinskiy G.M., Baranova L.A., Naydenov V.O. Submikronnyy istochnik svobodnykh elektronov [Submicron source of free electrons Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2015, Vol. 85, Issue 3, pp. 129-132.
32. Gulyaev Yu.V. Uglerodnye nanotrubnye struktury – novyy material dlya emissionnoy elektroniki [Carbon nanotube patterns – a new material for emission electronics], Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences], 2003, Vol. 73, No. 5, pp. 389-391.
33. Dmitriev A.N., Muzykov P.G., Tangali S. i dr. Issledovanie protsessa avtoemissii grafitizirovannykh sloev na poverkhnosti karbida kremniya [Field emission from the graphitized surface of silicon carbide], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 109-118.
34. Zaytsev N., Gornev E., Orlov S. i dr. Nanoalmazografitovye avtoemittery dlya integral'nykh avtoemissionnykh elementov [Nanoulatortue automater for integral field emission elements], Nanoindustriya [Nanoindustry], 2011, No. 5, pp. 36-39.
35. Liu J., Zeng B., Wang X. et al. Ultra low field electron emission of graphene exfoliated from carbon cloth, Applied Physics Letters, 2012, No. 101, pp. 153104.
36. Belyanin A.F., Borisov V.V., Timofeev M.A. i dr. Nenakalivaemye katody na osnove uglerodnykh nanostrukturirovannykh sloistykh struktur [Nakalivanija cathodes based on carbon nanostructured layered structures], Tekhnologiya i konstruirovanie v elektronnoy apparature [Technology and Designing in Electronic Equipment], 2013, No. 4, pp. 31-36.
37. Leychenko A.S., Negrov D.V., Raufov A.S. i dr. Primenenie avtoemissionnogo katoda iz termorasshirennogo grafita dlya formirovaniya elementa displeynoy matritsy [The use of a field emission cathode of expanded graphite for forming a display element matrix], Trudy MFTI [Proceedings of MIPT], 2010, Vol. 2, No. 1 (5), pp. 33-36.
38. Nguyen D.D., Lai Yi-T., Tai N.-H. Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film, Diamond and Related Materials, 2014, Vol. 47, pp. 1-6.
39. Chen L., He H., Ya H. et al. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter, Journal of Alloys and Compounds, 2014, Vol. 610, pp. 659-664.
40. Deng J.-H., Wang F.-J., Cheng L. et al. Improved field emission of few-layer graphene–carbon nanotube composites by high-temperature processing, Materials Letters, 2014, Vol. 124, pp. 15-17.
41. Fursey G.N. Ptitsyn V.E., Krotevich D.N. Spontaneous migration of the surface atoms at maximum current densities of the field-electron emission initiating vacuum breakdown, Proc. 11th ISDETV, 1984, Vol. 1, pp. 69-71.
42. Krotevich D.N., Ptitsyn V.E., Fursey G.N. Samoproizvol'naya perestroyka avtoemissionnogo katoda pri predel'nykh plotnostyakh toka [Spontaneous restructuring of the field emission cathode at the limiting current densities], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 1985, Vol. 55, No. 3, pp. 625-627.

Comments are closed.