Article

Article title DESIGN OF AUTONOMOUS CONTROL SYSTEM OF NONLINEAR MULTIVARIABLE OBJECT ON THE BASE OF JCF
Authors A.R. Gaiduk, K.V. Kolokolova, A.R. Neydorf, E.A. Plaksienko
Section SECTION I. AUTOMATION AND CONTROL
Month, Year 02, 2015 @en
Index UDC 681.51
DOI
Abstract In article the design problem of autonomous control systems for multivariable marine mobile objects is considered. The purpose of the article is development of a method for analytical design of the systems for autonomous control of the nonlinear movements of the multivariate mobile objects with the desired speed on the desired trajectory. Thus it is supposed, that the trajectory of movement is determined by the given coordinates of the current position of object and a target point. The system should solve operatively tasks of definition of the current rate, angular speed its change and to provide corresponding movement of the mobile object. Complexity of the specified tasks decision is caused by multivariability and nonlinear character of the mathematical models and also restrictions on values of control action of the considered objects. For overcoming these complexities at the decision of tasks in view representation of nonlinear model of considered mobile objects the Jordan controlled form of the equations of the multivariate objects is used. The equations of many real multivariable objects with differentiated nonlinearity are resulted in this form. At performance of the established in work conditions of resolvability the developed method allows to receive the analytical decision of the design automatic control system problem. Quality of control processes is provided by assignment of the control algorithms parameters on each controlled variables. These algorithms it is realized by the digital controller constructed on the basis of the specialized microcontroller, connected with measuring gauges and executive devices. Properties of the synthesized system of autonomous control of multivariable moving object are investigated by numerical simulation on a PC. The developed method of analytical design is applicable and when desirable trajectories of movement are given by other ways.

Download PDF

Keywords Controlled object; nonlinearity; multivariability; Jordan controlled form; trajectory; method of analytical design; microcontroller.
References 1. Lukomskiy Yu.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnymi ob"ektami [Control systems of sea mobile objects]. Leningrad: Sudostroenie, 1988, 272 p.
2. Spravochnik po teorii korablya [Handbook of ship theory], Under ed. Ya.I. Voytkunskogo. Leningrad: Sudostroenie, 1996.
3. Upravlenie podvizhnymi ob"ektami. Bibliograficheskiy ukazatel' [Management of mobile objects. Bibliography]. V 3-kh issue. Issue 3. Morskie ob"ekty [Marine objects]. Moscow: IPU RAN, 2011.
4. Vagushchenko L.L., Tsymbal N.N. Sistemy avtomaticheskogo upravleniya dvizheniem sudna [System of automatic control of ship motion]. 3 rd izd., pererabotan. i dopoln. Odessa: Fenіks, 2007.
5. Burdun I.E. Model' samoorganizatsii dvizheniya K. Reynol'dsa i voprosy «staynogo» primeneniya vysokomanevrennykh vysokoavtonomnykh bespilotnykh LA [The model of self-organization movement K. Reynolds and questions "schooling" the use of highly maneuverable vysokooktanovyh unmanned LA], Materialy XVI Shkoly-seminara TsAGI «Aerodinamika
letatel'nykh apparatov», 3-4 marta 2005 [Proceedings of the sixteenth workshop TSAGI "Aerodynamics of aircraft", 3-4 March 2005]. Zhukovskiy: TsAGI, 2005, pp. 28-29.
6. Neydorf R.A. Dinamicheskaya samoorganizatsiya v diskretno-nepreryvnykh sistemakh upravleniya tekhnologicheskimi protsessami. Sinergetika. Samoorganizuyushchiesya protsessy v sistemakh i tekhnologiyakh [Dynamic self-organization of discrete-continuous systems of control of technological processes. Synergy. Self-organizing processes in systems and technologies], Materialy Mezhdunarodnoy nauchnoy konferentsii, 21-26 sentyabrya [Proceedings of the International scientific conference, 21-26 September]. Part 1. Komsomol'sk-na-Аmure, 1998, pp. 37-46.
7. Marino R., Tomei P. Adaptive regulation of uncertain linear minimum phase systems with unknown exosystems, Proc. IEEE 45th Conf. Decision Control. San Diego, 2006, pp. 1099-1104.
8. Fradkov А.L., Hill D.J. Exponential feedback passivity and stabilizability of nonlinear systems, Automatica, 1998, No. 6, pp. 6977-703.
9. Gayduk A.R., Plaksienko E.A. Astaticheskoe upravlenie nelineynymi ob"ektami [A static control of nonlinear plants], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 3 (128), pp. 151-160.
10. Neydorf R.A. Kaskadnyy sintez dinamicheskogo etalona epsilon-optimal'noy po bystrodeystviyu sistemy [Cascade synthesis of dynamic standard of Epsilon-optimal system], Materialy 5 Vserossiyskoy nauchno-prakticheskoy кonferentsii «Perspektivnye sistemy i zadachi upravleniya»
[Materials of the 5th all-Russian scientific-practical Conference "Perspective systems and control problems"]. Taganrog: Izd-vo TTI YuFU, 2010, Vol. 1, pp. 151-158.
11. Pshikhopov V.Kh., Gurenko B.V. Razrabotka i issledovanie matematicheskoy modeli avtonomnogo nadvodnogo mini-korablya «Neptun» [Development and research of mathematical models of Autonomous surface mini-ship "Neptune"], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 4, pp. 23-28. Available at: http://www.ivdon.ru/ru/ magazine/archive/n4y2013/1918.
12. Gayduk A.R., Plaksienko E.A. Sintez avtonomnykh i svyaznykh mnogomernykh sistem upravleniya [Synthesis of Autonomous and coherent multidimensional control systems], Mekhatronika,
avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2012, No. 1, pp. 13-20.
13. Wonham W.M. Linear multivariable systems: a geometric approach. 2rd ed. Springer-Verlag, New York, 1978.
14. Voevoda A.A. Stabilizatsiya dvukhmassovoy sistemy: polinomial'nyy metod sinteza [Stabilization of two-mass system: a polynomial method for the synthesis of], Nauchnyy vestnik NGU [Scientific Bulletin of National Mining University], 2009, No. 4 (58), pp. 121-124.
15. Gaiduk A.R., Plaksienko E.A., Besklubova K.V. Multivariable dynamic system control under condition of autonomy and coherence. Dynamical systems. Theory. Proc.12-th Conference on Dynamical systems – theory and application. December 2-5, 2013, Łуdź, Poland, pp. 195-204.
16. Khalil N.K. Robust servomechanism output feedback controllers for linearizable systems, Automatica, 1994, Vol. 30, No. 10, pp. 57-69.
17. Gayduk A.R. Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial'nyy podkhod) [Theory and analytical methods of synthesis of automatic control systems (polynomial approach)]. Moscow: Fizmatlit, 2012.
18. Gayduk A.R., Pshikhopov V.Kh., Medvedev M.Yu, Plaksienko E.A., Shapovalov I.O. Upravlyaemaya forma Zhordana i sintez nelineynykh sistem upravleniya [Controllable Jordan form and synthesis of nonlinear control systems], XII VSPU-2014. Moskva, 16-19 iyunya 2014 g.: Trudy. [El. resurs] [XII The EVERYTHING-2014. Moscow, June 16-19, 2014: Proceedings. [El. resource]. Moscow: IPU RAN, 2014, pp. 521-531.
19. Gayduk A.R., Plaksienko E.A. Sintez nelineynykh optimal'nykh sistem na osnove upravlyaemoy formy Zhordana. Sistemnyy analiz, upravlenie i obrabotka informatsii [Synthesis of nonlinear optimal systems based on the controllable Jordan form. System analysis, management and processing of information], Trudy 5-go Mezhdunarodnogo seminara (p. Divnomorskoe, 1.10 – 6.10.2014 g.) [Proceedings of the 5th International workshop (p. Divnomorskoe, 1.10 – 6.10.2014)], Under ed. R.A. Neydorfa. Rostov-on-Don: DGTU, 2014, pp. 209-215.
20. Gaiduk A.R. Astatic Control Design for Nonlinear Plants on Base of JCF, Trans-action on Electrical and Electronic Circuits and Systems, 2013, Vol. 3, Nо. 2. pp. 80-84.
21. Gayduk A.R., Belyaev V.E., P'yavchenko T.A. Teoriya avtomaticheskogo upravleniya v primerakh i zadachakh s resheniyami v MATLAB [Automatic control theory in examples and problems with solutions in MATLAB]. St. Petersburg: LAN'', 2011, 464 p.

Comments are closed.