Authors V.Yu. Vishnevetsky, T.P. Strochan
Month, Year 10, 2014 @en
Index UDC 615.471:616-073.97:616.831:681.3.06
Abstract Automatic methods of chemical analysis are closely associated with the analytical tools and microprocessor technology. Devices must be suitable for the automatic execution of the most important analytical determination stages, including a large volume measurements. Biosensors are selective biochemical sequence element with electronic sensor, allow for water analysis in real time and detect the various pollutants and their mixtures, eliminate the complex sample preparation need. It is necessary to select a versatile method for the automatic analysis, which would meet the requirements for different purposes. The most appropriate methods in accordance with the converter (transducer) piezoelectric biosensor are considered. Determining the best method ensure efficient work, more accurate result with the least error. Thanks to this practical work is done manually fade analytical procedures. This reduces the execution time of analytical determinations at improving the quality of the analysis results.

Download PDF

Keywords Biosensor method; monitoring; piezo; pollutant.
References 1. Kuznetsov V.V. Protochno-inzhektsionnyy analiz [Flow-injection analysis], Sorosovskiy obrazovatel'nyy zhurnal [Soros educational journal], 1999, No. 11, pp. 56-60.
2. Vishnevetskiy V.Yu. Strochan T.P. Imitatsionnaya model' kvartsevogo biosensora dlya ekologicheskikh issledovaniy [Simulation model quartz crystal biosensor for environmental
studies], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2013, No. 2. Available at:
3. Vishnevetskiy V.Yu., Starchenko I.B., Ledyaeva V.S. Strochan T.P. Modelirovanie biosensorov dlya postroeniya sistemy opredeleniya stepeni toksichnosti vodnoy sredy [Modeling of biosensors to build a system to determine the degree of toxicity of the aquatic environment], Prikaspiyskiy zhurnal: upravlenie i vysokie tekhnologii [Caspian Journal Management and High Technologies], 2013, No. 3, pp. 129-139.
4. Shpigun L.K. Protochno-inzhektsionnyy analiz [Flow-injection analysis], Zhurnal analiticheskoy khimii [Journal of analytical chemistry], 1990, Vol. 45, No. 6, pp. 1045-1091.
5. Egorov A.A. Sistematika, printsipy raboty i oblasti primeneniya datchikov [Systematics, principles and applications of sensors], Zhurnal radioelektroniki [Journal of Radio Electronics], 2009, No. 3, pp. 35-46.
6. Vishnevetskiy V.Yu., Strochan T.P. Biosensor dlya monitoringa vodnoy sredy [Biosensor for monitoring the aquatic environment] Materialy Shestoy Vserossiyskoy nauchnoy konferentsii «Ekologiya 2011-more i chelovek» [The materials of the Sixth all-Russian scientific conference "Ecology 2011-the sea and people"].Taganrog: Izd-vo TTI YuFU, 2011, pp. 138-144.
7. Van der Linden. Classification and Definition of Analytical Methods Based on Flowing Media, Pure and Appl. Chem., 1994, Vol. 66, No. 12, pp. 2494-2500.
8. Ruzicka J., Elo H. Hansen Flow injection analysis principles, applications and trends, Chem. Papers, 1980, Vol. 114, No, 15, pp. 19-44.
9. Trojanowicz M. Flow Analysis as Advanced Branch of Flow Chemistry, Mod Chem appl., 2013, No. 1, pp. 104. doi:10.4172/mca.1000104.
10. Merlos Rodrigo M.A., Zitka O. Analysis of Cadmium-Phytochelatins 2 Complexes Using Flow Injection Analysis Coupled with Electrochemical Detection Mass Spectrometry. Sci. 8, 2013, pp. 4409-4421.

Comments are closed.