Authors A.V. Luchinin, I.B. Starchenko, A.A. Reznichenko
Month, Year 10, 2014 @en
Index UDC 615.47:617-089
Abstract The new method of the forecast the biorhythmological characteristics of the person is introduced, based on allocation antiphase component of signals range and structure regression function separately for each of them. It is revealed that set rhythm components of a range are modulated by slow-wave components by amplitude modulation type with suppressed carrier. Accuracy appraisal of approximation with the aid the "direct" high antiphase component regression and the regression enveloping high-frequency signal with the subsequent restoration bearing are given. The standard methods of digital processing signals (the spectral analysis, a digital filtration, a method of «synchronous detecting») are used for a method realization. The main results are received by example of allocation slow-wave (about the minute) components photoplethysmogram, but it can be applied and to other electrophysiological signals (EEG, an electrocardiogram, EMG, etc.). The opportunity signal reconstruction on a big interval of time that allows to predict a background concerning which it is possible to estimate efficiency of this or that physiotherapeutic influence.

Download PDF

Keywords Photoplethysmogram; slow-wave components; regression.
References 1. Ding G, Kang J, Liu Q, Shi T, Pei G, Li Y. Insights into the coupling of duplication events and macroevolution from an age profile of animal transmembrane gene families. PLoS Comput Biol 2006; 2(8):e102.
2. Stephen J. Puetz, Andreas Prokoph, Glenn Borchardt d, Edward W. Mason. Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Non-linear Science, and Nonequilibrium and Complex Phenomena. 31 January 2014.
3. Longuet-Higgins MS, Drazen DA. On steep gravity waves meeting a vertical wall: a triple instability, J Fluid Mech, 2002, 466 p.
4. Jiang L, Perlin M, Schultz WW. Period tripling and energy dissipation of breaking standing waves, J Fluid Mech, 1998; 369:273–99.
5. Baevskiy R.M., Kirillov O.I., Kletskin S.Z. Matematicheskiy analiz izmeneniy serdechnogo ritma pri stresse [Mathematical analysis of changes in cardiac rhythm during stress]. Moscow: Nauka,1984, 222 p.
6. Zaguskin S.L. Ritmy kletki i zdorov'e cheloveka [Rhythms cells and human health]. Taganrog: Izd-vo YuFU, 2010, 292 p.
7. Sinyutin S.A. Tekhnologiya strukturnogo analiza elektrofiziologicheskikh signalov s ispol'zovaniem veyvlet-preobrazovaniya [Technology structural analysis of electrophysiological signals using wavelet transform], Programmnye produkty i sistemy [Software products and systems], 2002, No. 1, pp. 45-48.
8. Zaguskin S.L. Apparatura i metody khronodiagnostiki i bioupravlyaemoy khronofizioterapii [Apparatus and methods frontierlike and as hronofizioterapii], Palliativnaya meditsina i
reabilitatsiya [Palliative medicine and rehabilitation], 1998, No. 4-5. pp. 1213.
9. Dorogobed L.A., Luchinin A.V. Algoritm opredeleniya funktsional'noy asimmetrii mozga po rekonstruirovannym signalam EEG [The algorithm for determining the functional asymmetry of the brain in the reconstructed EEG signals], II Vserossiyskaya nauchnaya shkola «Neyrobiologiya i novye podkhody k iskusstvennomu intellektu i nauke o mozge» [II all-Russian scientific school "Neurobiology and new approaches to artificial intelligence and brain science"].
Rostov-on-Don: Izd-vo YuFU, 2011, pp. 152-156.
10. Khil'debrandt G., Mozer M., Lekhofer M. Khronobiologiya i khronomeditsina. Biologicheskie ritmy meditsinskoe primenenie [Chronobiology and the bases of bioenergetics. Biological rhythms medical use]. Moscow, 2006, 144 p.

Comments are closed.