Article

Article title IMPROVING THE INHOMOGENEITY DETECTION ACCURACY WITHIN STRONGLY SCATTERING MEDIA AVOIDING INVERSE PROBLEM SOLUTION
Authors A.Yu. Potlov
Section SECTION II. MEDICAL DIAGNOSTICS AND THERAPY
Month, Year 10, 2014 @en
Index UDC 535.361
DOI
Abstract A new method of direct (without inverse problem solution using methods of diffuse optical tomography) optical inhomogeneity, such as cysts, hematomas, tumors et al. detection within strongly scattering medium having optical properties of biological tissue is described. The suggested method is based on preprocessing the surface obtained from time-resolved data in the Cartesian frame with consecutive conformal mapping to two cylindrical surfaces. The key method feature is application of late arriving photons approximated by straight lines. The photons are scattered and diffusely transmitted through optically turbid object. The method can be used for express diagnostics of adsorbing and scattering optical inhomogeneities in mammographic tests, traumatology, and diagnostics of brain structures. The method can be implemented with the same hardware and software as for the inverse problem solution. So, the implementation does not require any additional costs.

Download PDF

Keywords Diffuse optical tomography; late arriving photons; highly scattering media; conformal mapping; background noise; temporal point spread function.
References 1. Fiks I.I. Ispol'zovanie graficheskikh protsessorov dlya resheniya zadachi rasprostraneniya sveta v diffuzionnoy fluorestsentnoy tomografii metodom Monte-Karlo [The use of GPUs for solving the problem of light propagation in diffusive fluorescence tomography using Monte Carlo], Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky State University of Nizhni Novgorod], 2011, No. 4 (1), pp. 190-195.
2. Vlasov V.V., Mogilenskikh D.V., Kravtsenyuk O.V., Lyubimov V.V. Algebraicheskaya rekonstruktsiya i postobrabotka v odnoshagovoy diffuzionnoy opticheskoy tomografii [Algebraic reconstruction and post-processing in a single step diffusion optical tomography], Kvantovaya
elektronika [Quantum electronics], 2008, Vol. 38, No. 6, pp. 588-596.
3. Schweiger M., Arridge S.R. Optimal Data Types in Optical Tomography, Proc. Information Processing in Medical Imaging, LNCS 1230, Springer, 1997, pp. 71-84.
4. Boas D.A., Brooks D.H., Miller E.L, DiMarzio C.A., Kilmer M., Gaudette R.J., Zhang Q. Imaging the Body with Diffuse Optical Tomography, IEEE Signal Processing, 2001, Vol. 18, No. 6, pp. 57-75.
5. Arridge S.R., Cope M., Delpy D.T. Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis, Physics in Medicine and Biology, 1992, Vol. 37, Issue 7, pp. 1532-1560.
6. Hebden J.C., Yates T.D., Gibson A., Everdell N.L., Arridge S.R., Chicken D.W., Douek M., and Keshtgar M.R.S. Monitoring recovery after laser surgery of the breast with optical tomography: a case study, Applied Optics, 2005, Vol. 44, No.10, pp. 1898-1904.
7. Vidal-Rosas E.E., Billings S.A., Zheng Y., Mayhew J.E., Johnston D., Kennerley A.J., Coca D. Reduced-order modeling of light transport in tissue for real-time monitoring of brain hemodynamics using diffuse
optical tomography, Journal of Biomedical Optics, 2014, Vol. 2,
pp. 026008.
8. Proskurin S.G., Potlov A.Yu., Frolov S.V. Detection of an absorbing heterogeneity in a biological object during recording of scattered photons, Biomedical Engineering, 2013, Vol. 46, No. 6, pp. 219-223.
9. Riley J., Amyot F., Pohida T. et al. A hematoma detector–a practical application of instrumental motion as signal in near infra-red imaging, Biomedical Optics Express, 2012, Vol. 3, No. 1, pp. 192-205.
10. Konovalov A.B., Vlasov V.V., Kalintsev A.G., Kravtsenyuk O.V., Lyubimov V.V. Impul'snaya diffuzionnaya opticheskaya tomografiya na osnove ispol'zovaniya analiticheskikh statisticheskikh kharakteristik traektoriy fotonov [Pulsed diffusion optical tomography based on
the use of analytical statistical characteristics of the trajectories of photons], Kvantovaya elektronika [Quantum Electronics], 2006, Vol. 36, No. 11, pp. 1048-1055.
11. Proskurin S.G., Potlov A.Yu. Early- and late-arriving photons in diffuse optical tomography, Photonics & Lasers in Medicine, 2013,Vol. 2, Issue 2, pp. 139-146. Doi:10.1515 /plm-2013-0003.
12. Potlov A.Yu., Proskurin S.G., Frolov S.V. Three-dimensional representation of late arriving photons for the detection of inhomogeneous in diffuse optical tomography // Quantum Electronics. – 2014. – Vol. 44, № 2. – P. 174-181.
13. Proskurin S.G. Using late arriving photons for diffuse optical tomography of biological objects // Quantum Electronics. – 2011. – Vol. 4, № 5. – P. 402-406.
14. Dehghani H., Srinivasan S., Pogue B., Gibson A. Numerical modelling and image reconstruction in diffuse optical tomography // Phil. Trans. R. Soc. A., 2009, pp. 367. Doi:10.1098/rsta.2009.0090.
15. Potlov A.Yu. Detection of optical inhomogeneities of biological tissue using TPSF conformal mapping, ISJ Theoretical & Applied Science, 2014, Vol. 17, No. 9, pp. 31-33.

Comments are closed.