Article

Article title NONLINEAR ANALYSIS OF NORMAL HUMAN ELECTROENCEPHALOGRAM RHYTHMIC COMPONENTS
Authors V.P. Omelchenko, I.O. Mihalchich
Section SECTION II. MEDICAL DIAGNOSTICS AND THERAPY
Month, Year 10, 2014 @en
Index UDC 612.82:51-76
DOI
Abstract The article describes the research results of basic rhythms of healthy subjects’ EEG in the framework of the dynamical chaos theory. The delay τ, the correlation dimension DC are determined for all rhythms. Phase portraits and recurrent charts are built using the method of delayed coordinates. The nonlinear dynamics differences of the EEG rhythmic components are found on the basis of the obtained results. Delta activity has the highest time delay and the lowest value of the correlation dimension and combined with the results of recurrent chart visual evaluation it results in the smallest complexity delta activity relative to other components of the EEG. The time delay τ is reduced with frequency increase. The correlation dimension DC, on the contrary, increases and reaches its maximum for the beta rhythm. This is confirmed considering recurrent charts. It follows from the above that systems generating various rhythmic components have different complexity increasing with the bioelectrical activity frequency oscillation.

Download PDF

Keywords Electroencephalogram; EEG rhythms; correlation dimension; phase portraits; recurrence plots.
References 1. Sidorenko A.V., Solonovich N.A., Selitskiy A.P. Informatsionno-izmeritel'naya sistema dlya otsenki dinamiki funktsional'nogo sostoyaniya mozga i serdtsa [Information-measuring system
for the assessment of the functional state of the brain and heart], Biomeditsinskie tekhnologii i radioelektronika [Biomedical technology and electronics], 2007, No. 6, pp. 18-21.
2. Andreeva A.V., Galishnikov R.M. Intellektual'naya obrabotka elektromiograficheskogo signala na osnove metodov nelineynoy dinamiki [Intelligent processing of EMG signal on the basis of
methods of nonlinear dynamics], Sbornik materialov V Troitskoy konferentsii «Meditsinskaya fizika i innovatsii v meditsine» [Proceedings of the fifth Trinity conference "Medical physics
and innovations in medicine"]. Vol. 1. Troitsk, 2012, pp. 70-72.
3. Semenova N.Yu., Zakharov V.S. Analiz korrelyatsionnoy razmernosti dannykh EEG pri epilepsii u detey [Analysis of the correlation dimension of EEG data in epilepsy in children],
Nelineynyy mir [Nonlinear World], 2010, No. 3, pp. 180-188.
4. Kropotov Yu.D. Kolichestvennaya EEG, kognitivnye vyzvannye potentsialy mozga cheloveka i neyroterapiya [Quantitative EEG, cognitive evoked potentials of the human brain and neurotherapy]: Per. s angl. Donetsk: Izdatel' Zaslavskiy A.Yu., 2010, 512 p.
5. Nikolaeva D.A. Primenenie metoda otsenki korrelyatsionnoy razmernosti dlya analiza EEG cheloveka s zabolevaniem epilepsii [Application of method of estimation of the correlation
dimension for the analysis of EEG of a person with the disease of epilepsy], Differentsial'nye uravneniya i protsessy upravleniya [Differential equations and control processes], 2009, No. 2.
Available at: http//www.math.spbu.ru/diffjournal/pdf/darina.pdf (accessed: 12 May 2014).
6. Eydukaytis A.S., Yatsenko M.V. Korrelyatsionnaya razmernost' v analize EEG [The correlation dimension of the EEG analysis], Sbornik tezisov dokladov Pervoy Natsional'noy Konferentsii
«Informatsionno-vychislitel'nye tekhnologii v reshenii fundamental'nykh nauchnykh problem i prikladnykh zadach khimii, biologii, farmatsevtiki, meditsiny» [The book of abstracts of the First National Conference on Information and computing technology in the solution of fundamental scientific problems and butt-tasks of chemistry, biology, pharmacology, medicine"]. Moscow: Nauchnyy i uchebnyy metodicheskiy tsentr, 2002, pp. 157-158.
7. Takens F. Detecting strange attractors in turbulence, Lecture Notes in Mathematics, 1981, Vol. 898, pp. 366-381.
8. Mayorov O.Yu., Fenchenko V.N. Metod rusel i dzhokerov v issledovanii bioelektricheskoy aktivnosti mozga [Method riverbeds and jokers in the study of the bioelectric activity of the brain], Klinicheskaya informatika i telemeditsina [Clinical Informatics and telemedicine],
2012, Vol. 8, Issue 9, pp. 17-22.
9. Vladimirskiy E.I., Ismaylov B.I. Sinergeticheskie metody upravleniya khaoticheskimi sistemami [Synergistic methods of control of chaotic systems]. Baku: ELM, 2011, 240 p.
10. Nasibeh Talebi, Ali Motie Nasrabadi. Recurrence Plots for Identifying Memory Components in Single-Trial EEGs, Brain Informatics. Lecture Notes in Computer Science, 2010, Vol. 6334,
pp. 124-132.

Comments are closed.